cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A135975 Number of prime factors (without multiplicity) in Mersenne composites A065341.

This page as a plain text file.
%I A135975 #33 Sep 26 2024 05:18:31
%S A135975 2,2,3,2,2,3,3,3,2,2,3,3,3,2,2,2,2,2,5,2,2,2,2,5,4,5,2,4,3,4,5,3,2,2,
%T A135975 3,6,2,4,4,6,2,5,3,4,2,2,3,2,3,2,5,3,4,4,3,5,2,3,3,6,5,2,2,5,3,9,4,3,
%U A135975 5,2,8,4,4,3,5,2,4,6,3,4,2,7,3,4,4,2,5,4,5,3,5,4,3,6,4,3,4,3,4,4
%N A135975 Number of prime factors (without multiplicity) in Mersenne composites A065341.
%C A135975 Currently the smallest prime exponent p for which 2^p-1 is incompletely factored is p = 1213. - _Gord Palameta_, Aug 06 2018
%H A135975 Gord Palameta, <a href="/A135975/b135975.txt">Table of n, a(n) for n = 1..183</a>
%H A135975 GIMPS, <a href="https://www.mersenne.org/M1213">Status of M1213</a>
%H A135975 S. S. Wagstaff, Jr., <a href="https://homes.cerias.purdue.edu/~ssw/cun/">Main Tables</a> from the Cunningham Project: cofactor of M1213 is C297.
%F A135975 a(n) = A001221(A065341(n)). - _Michel Marcus_, Aug 07 2018
%t A135975 k = {}; Do[If[ ! PrimeQ[2^Prime[n] - 1], c = FactorInteger[2^Prime[n] - 1]; d = Length[c]; AppendTo[k, d]], {n, 1, 40}]; k
%t A135975 (PrimeNu /@ Select[2^Prime[Range[40]] - 1, ! PrimeQ[#] &]) (* _Jean-François Alcover_, Aug 13 2014 *)
%o A135975 (PARI) forprime(p=1, 1e3, if(!ispseudoprime(2^p-1), print1(omega(2^p-1), ", "))) \\ _Felix Fröhlich_, Aug 12 2014
%Y A135975 Cf. A000225, A001221, A065341, A054723, A134852.
%K A135975 nonn
%O A135975 1,1
%A A135975 _Artur Jasinski_, Dec 09 2007
%E A135975 a(29)-a(46) from _Felix Fröhlich_, Aug 12 2014
%E A135975 a(47)-a(100) from _Gord Palameta_, Aug 07 2018