This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A135976 #20 May 23 2021 02:51:12 %S A135976 2047,8388607,137438953471,2199023255551,576460752303423487, %T A135976 147573952589676412927,9671406556917033397649407, %U A135976 158456325028528675187087900671,2535301200456458802993406410751 %N A135976 Mersenne composites (A065341) with exactly 2 prime factors. %H A135976 Amiram Eldar, <a href="/A135976/b135976.txt">Table of n, a(n) for n = 1..39</a> %H A135976 Wikipedia, <a href="http://en.wikipedia.org/wiki/Semiprime">Semiprime</a>. %F A135976 a(n) = 2^A135978(n) - 1. - _Amiram Eldar_, May 23 2021 %p A135976 A135976 := proc(n) local i; %p A135976 i := 2^(ithprime(n))-1: %p A135976 if (nops(numtheory[factorset](i)) = 2) then %p A135976 RETURN (i) %p A135976 fi: end: [ seq(A135976(n), n=1..26) ]; # _Jani Melik_, Feb 09 2011 %t A135976 k = {}; Do[If[ ! PrimeQ[2^Prime[n] - 1], c = FactorInteger[2^Prime[n] - 1]; d = Length[c]; If[d == 2, AppendTo[k, 2^Prime[n] - 1]]], {n, 1, 40}]; k %o A135976 (PARI) forprime(p=1, 1e2, if(bigomega(2^p-1)==2, print1(2^p-1, ", "))) \\ _Felix Fröhlich_, Aug 12 2014 %Y A135976 Subsequence of A065341. %Y A135976 Cf. A000225, A054723, A134852, A135975, A135977, A135978, A135979. %K A135976 nonn %O A135976 1,1 %A A135976 _Artur Jasinski_, Dec 09 2007