cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A136001 Primes in A136000.

This page as a plain text file.
%I A136001 #16 Oct 20 2024 03:35:10
%S A136001 11,23,29,47,59,71,79,83,89,107,131,139,149,167,179,181,191,197,199,
%T A136001 223,227,233,239,251,263,269,307,311,347,349,359,373,379,383,389,419,
%U A136001 431,439,443,449,461,467,479,491,503,509,563,569,571,587,593,599,607,643
%N A136001 Primes in A136000.
%H A136001 Amiram Eldar, <a href="/A136001/b136001.txt">Table of n, a(n) for n = 1..10000</a>
%H A136001 Dallas Symphony Association, <a href="https://www.dallassymphony.org/community-education/dso-kids/listen-watch/instruments/triangle/">Dsokids - Triangle instrument</a>.
%H A136001 Epsilones, <a href="https://web.archive.org/web/20160303215728/https://www.epsilones.com/imagenes/historia/pitagoras-musica.gif">Pythagoras - Music</a>.
%H A136001 Ron Knott, <a href="http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Pythag/pythag.html">Pythagorean Triples and Online Calculators</a>.
%e A136001 a(1) = 11 because 11 is prime and {3,4,5} is a Pythagorean triple and 3+4+5 = 12 is the sum of a Pythagorean triple and 11+1 = 12, then we can write 3+4+5 = 11+1.
%p A136001 isprPer := proc(p) local dvs,m,n ; if p mod 2 = 1 then RETURN(false) ; fi ; dvs := p/2 ; for m in numtheory[divisors](dvs) do n := dvs/m-m ; if n > 0 and n < m then RETURN(true) ; fi ; od: RETURN(false) ; end: isA010814 := proc(n) local d; for d in numtheory[divisors](n) do if isprPer(n/d) then RETURN(true) ; fi ; od: RETURN(false) ; end: isA136000 := proc(n) isA010814(n+1) ; end: isA136001 := proc(n) isprime(n) and isA136000(n) ; end: for n from 2 to 600 do if isA136001(n) then printf("%d, ",n) ; fi: od: # _R. J. Mathar_, Dec 12 2007
%t A136001 q[n_] := PrimeQ[n] && Module[{d = Divisors[(n+1)/2]}, AnyTrue[Range[3, Length[d]], d[[#]] < 2 * d[[#-1]] &]]; Select[Range[650], q] (* _Amiram Eldar_, Oct 19 2024 *)
%Y A136001 Cf. A136000, A136003, A009096 (perimeters of Pythagorean triangles).
%K A136001 nonn
%O A136001 1,1
%A A136001 _Omar E. Pol_, Dec 10 2007
%E A136001 More terms from _R. J. Mathar_, Dec 12 2007
%E A136001 Extended by _Ray Chandler_, Dec 13 2008