This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A136017 #51 Feb 16 2025 08:33:07 %S A136017 35,143,323,575,899,1295,1763,2303,2915,3599,4355,5183,6083,7055,8099, %T A136017 9215,10403,11663,12995,14399,15875,17423,19043,20735,22499,24335, %U A136017 26243,28223,30275,32399,34595,36863,39203,41615,44099,46655,49283,51983 %N A136017 a(n) = 36n^2 - 1. %C A136017 The least common multiple of 6*n+1 and 6*n-1. - _Colin Barker_, Feb 11 2017 %H A136017 Vincenzo Librandi, <a href="/A136017/b136017.txt">Table of n, a(n) for n = 1..1000</a> %H A136017 X. Gourdon and P. Sebah, <a href="http://numbers.computation.free.fr/Constants/Pi/piSeries.html">Collection of series for Pi</a> %H A136017 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PellEquation.html">Pell Equation</a> %H A136017 Edward Everett Withford, <a href="http://name.umdl.umich.edu/abv2773.0001.001">Pell Equation</a> %H A136017 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1). %F A136017 O.g.f.: x*(-35-38*x+x^2)/(-1+x)^3 = 1-35/(-1+x)-108/(-1+x)^2-72/(-1+x)^3. - _R. J. Mathar_, Dec 12 2007 %F A136017 a(n) = A061037(12n+10)=(6n-1)*(6n+1). - _Paul Curtz_, Sep 25 2008 %F A136017 Sum_{k>=1} (-1)^(k+1)/a(k) = (Pi-3)/6. - _Jaume Oliver Lafont_, Oct 20 2009 %F A136017 E.g.f.: 1 + (36 x^2 + 26 x - 1) exp(x). - _Robert Israel_, Jun 09 2016 %F A136017 Product_{n >= 1} A016910(n) / a(n) = Pi / 3. - _Fred Daniel Kline_, Jun 09 2016 %F A136017 Sum_{n>=1} 1/a(n) = 1/2 - sqrt(3)*Pi/12. - _Amiram Eldar_, Jun 27 2020 %t A136017 Table[36n^2 - 1, {n, 1, 100}] %o A136017 (PARI) a(n)=36*n^2-1 \\ _Jaume Oliver Lafont_, Oct 20 2009 %o A136017 (Magma)[36*n^2 - 1: n in [1..50]]; // _Vincenzo Librandi_, Jul 09 2012 %Y A136017 Cf. A088878, A023208, A136016, A061037, A016910. %K A136017 nonn,easy %O A136017 1,1 %A A136017 _Artur Jasinski_, Dec 10 2007