This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A136032 #32 Oct 10 2024 08:17:55 %S A136032 2,2,3,2,2,3,3,3,2,2,3,3,3,2,2,2,2,2,5,2,2,2,2,5,4,5,2,4,3,4,5,3,2,2, %T A136032 3,6,2,4,4,6,2,5,3,4,2,2,3,2,3,2,5,3,4,4,3,5,2,3,3,6,5,2,2,5,3,9,4,3, %U A136032 5,2,8,4,4,3,5,2,4,6,3,4,2,7,3,4,4,2,5,4,5,3,5,4 %N A136032 Number of prime factors (with multiplicity) of Mersenne composites (A065341). %C A136032 If the conjecture that all Mersenne composites are squarefree is true, then this sequence is identical to A135975. - _Felix Fröhlich_, Aug 24 2014 %H A136032 Amiram Eldar, <a href="/A136032/b136032.txt">Table of n, a(n) for n = 1..183</a> %F A136032 a(n) = A001222(A065341(n)). - _Michel Marcus_, Aug 24 2014 %t A136032 a = {}; Do[If[PrimeQ[n] && !PrimeQ[2^n - 1], w = 2^n - 1; c = FactorInteger[w]; d = Length[c]; b = 0; Do[b = b + c[[k]][[2]], {k, 1, d}]; AppendTo[a, b]], {n, 2, 150}]; a %t A136032 PrimeOmega/@Select[2^Prime[Range[100]]-1,!PrimeQ[#]&] (* _Harvey P. Dale_, Nov 01 2016 *) %o A136032 (PARI) forprime(p=2, 1e3, if(!ispseudoprime(2^p-1), print1(bigomega(2^p-1), ", "))) \\ _Felix Fröhlich_, Aug 24 2014 %Y A136032 Cf. A001222, A065341, A135975. %K A136032 nonn %O A136032 1,1 %A A136032 _Artur Jasinski_, Dec 11 2007 %E A136032 More terms from _Michel Marcus_, Nov 04 2013 %E A136032 Definition adjusted by _Felix Fröhlich_, Aug 24 2014 %E A136032 More terms from _Felix Fröhlich_, Aug 24 2014