cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A136032 Number of prime factors (with multiplicity) of Mersenne composites (A065341).

This page as a plain text file.
%I A136032 #32 Oct 10 2024 08:17:55
%S A136032 2,2,3,2,2,3,3,3,2,2,3,3,3,2,2,2,2,2,5,2,2,2,2,5,4,5,2,4,3,4,5,3,2,2,
%T A136032 3,6,2,4,4,6,2,5,3,4,2,2,3,2,3,2,5,3,4,4,3,5,2,3,3,6,5,2,2,5,3,9,4,3,
%U A136032 5,2,8,4,4,3,5,2,4,6,3,4,2,7,3,4,4,2,5,4,5,3,5,4
%N A136032 Number of prime factors (with multiplicity) of Mersenne composites (A065341).
%C A136032 If the conjecture that all Mersenne composites are squarefree is true, then this sequence is identical to A135975. - _Felix Fröhlich_, Aug 24 2014
%H A136032 Amiram Eldar, <a href="/A136032/b136032.txt">Table of n, a(n) for n = 1..183</a>
%F A136032 a(n) = A001222(A065341(n)). - _Michel Marcus_, Aug 24 2014
%t A136032 a = {}; Do[If[PrimeQ[n] && !PrimeQ[2^n - 1], w = 2^n - 1; c = FactorInteger[w]; d = Length[c]; b = 0; Do[b = b + c[[k]][[2]], {k, 1, d}]; AppendTo[a, b]], {n, 2, 150}]; a
%t A136032 PrimeOmega/@Select[2^Prime[Range[100]]-1,!PrimeQ[#]&] (* _Harvey P. Dale_, Nov 01 2016 *)
%o A136032 (PARI) forprime(p=2, 1e3, if(!ispseudoprime(2^p-1), print1(bigomega(2^p-1), ", "))) \\ _Felix Fröhlich_, Aug 24 2014
%Y A136032 Cf. A001222, A065341, A135975.
%K A136032 nonn
%O A136032 1,1
%A A136032 _Artur Jasinski_, Dec 11 2007
%E A136032 More terms from _Michel Marcus_, Nov 04 2013
%E A136032 Definition adjusted by _Felix Fröhlich_, Aug 24 2014
%E A136032 More terms from _Felix Fröhlich_, Aug 24 2014