cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A136045 Bisection of A138546.

Original entry on oeis.org

1, 4, 42, 660, 12810, 281736, 6727644, 170316432, 4504487130, 123255492360, 3465702008340, 99645553785960, 2918768920720380, 86852063374902000, 2619552500788984200, 79939673971478231760
Offset: 0

Views

Author

N. J. A. Sloane, Mar 25 2008

Keywords

Programs

  • Maple
    sq := (1-40*x+144*x^2)^(1/2); pb := 54*x*(108*x^2-27*x+1+(9*x-1)*sq);
    H1 := hypergeom([7/6,1/3],[1],pb); H2 := hypergeom([1/6,4/3],[1],pb);
    fa := (10-72*x-6*sq)^(1/2)/(216*x);
    ogf := fa*((648*x^2+90*x+1+(54*x+3)*sq)*H1^2 - (612*x-7+3*sq)*H1*H2 + 8*(72*x-1)*H2^2); series(ogf,x=0,20); # Mark van Hoeij, Nov 12 2011

Formula

G.f.: ((41472*x^3 - 11520*x^2 + 288*x)*g'' + (-23040*x + 432 + 103680*x^2)*g' + (20736*x-864)*g)/1728 where g is the o.g.f. of A002896. - Mark van Hoeij, Nov 12 2011
a(n) = hypergeom([1/2,-n,-n],[1,2],4)*binomial(2*n,n). - Mark van Hoeij, May 13 2013
D-finite with recurrence n*(n+1)^2*a(n) +4*(-13*n^3+10*n^2+2*n-3)*a(n-1) +12*(2*n-3)*(26*n^2-61*n+39)*a(n-2) -432*(2*n-5)*(n-2)*(2*n-3)*a(n-3)=0. - R. J. Mathar, Jul 27 2022