cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A136046 Bisection of A138543.

Original entry on oeis.org

1, 3, 26, 345, 5754, 110586, 2341548, 53208441, 1276027610, 31930139670, 826963069140, 22035414489270, 601361536493340, 16749316314679500, 474777481850283240, 13665774112508864385, 398682239947705700730, 11770712453752716494910, 351240103372615793928900, 10581780543413346794758770
Offset: 0

Views

Author

N. J. A. Sloane, Mar 25 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Q2[n_] := Quotient[n, 2];
    A136046[n_] := Sum[(-1)^k*Binomial[2n, k] CatalanNumber[Q2[k+1]] CatalanNumber[Q2[k]](2*Q2[k]+1) Binomial[2n-k, Q2[2*n-k]], {k, 0, 2n + 1}];
    Array[A136046, 20, 0]  (* After Mélika Tebni,  Peter Luschny, Jun 30 2025 *)
  • Python
    from math import comb as C
    def CN(n): return (C(2*n, n)//(n+1)) # Catalan numbers
    def a(n): return sum((-1)**k*C(2*n, k)*CN((k+1)//2)*CN(k//2)*(2*(k//2)+1)*C(2*n-k, (2*n-k)//2) for k in range(2*n+1))  # Mélika Tebni, Jun 30 2025

Formula

a(n) = Sum_{k=0..2*n} (-1)^k*binomial(2*n, k)*A005558(k)*A001405(2*n-k). - Mélika Tebni, Jun 30 2025

Extensions

a(16)-a(19) from Mélika Tebni, Jun 30 2025