cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A136082 Son primes of order 5.

This page as a plain text file.
%I A136082 #19 Aug 07 2021 18:01:13
%S A136082 3,11,17,23,41,53,59,107,131,167,173,179,191,257,263,269,389,401,431,
%T A136082 461,467,479,521,563,569,599,647,653,677,683,719,773,821,839,857,887,
%U A136082 947,971,1031,1049,1061,1091,1103,1151,1181,1217,1223,1259,1277,1301
%N A136082 Son primes of order 5.
%C A136082 For smallest son primes of order n see A136027 (also definition). For son primes of order 1 see A023208. For son primes of order 2 see A023218. For son primes of order 3 see A023225. For son primes of order 4 see A023235.
%C A136082 Numbers in this sequence are those primes p such that 11*p + 10 is also prime. Generally, son primes of order n are the primes p such that (2n+1)*p + 2n is also prime. - _Bob Selcoe_, Apr 04 2015
%H A136082 Amiram Eldar, <a href="/A136082/b136082.txt">Table of n, a(n) for n = 1..10000</a>
%t A136082 n = 5; a = {}; Do[If[PrimeQ[(Prime[k] - 2n)/(2n + 1)], AppendTo[a, (Prime[k] - 2n)/(2n + 1)]], {k, 1, 1000}]; a
%t A136082 q=10;lst={};Do[p=Prime[n];If[PrimeQ[(q+1)*p+q],AppendTo[lst,p]],{n,6!}];lst (* _Vladimir Joseph Stephan Orlovsky_, Mar 10 2009 *)
%t A136082 Select[Prime[Range[250]],PrimeQ[11#+10]&] (* _Harvey P. Dale_, Aug 07 2021 *)
%Y A136082 Cf. A023208, A023218, A023225, A023235, A094524, A136019, A136020, A136026, A136027, A023208, A136083, A136084, A136085, A136086, A136087, A136088, A136089, A136090, A136091.
%K A136082 nonn
%O A136082 1,1
%A A136082 _Artur Jasinski_, Dec 12 2007