A136118 Least index m>0 such that A136117(n)-A000326(m) is again a pentagonal number.
5, 4, 7, 12, 19, 17, 25, 20, 10, 28, 45, 42, 39, 17, 37, 21, 36, 35, 13, 33, 65, 28, 67, 32, 52, 40, 74, 31, 70, 85, 35, 16, 60, 70, 77, 68, 42, 30, 105, 76, 59, 26, 74, 49, 115, 19, 125, 115, 102, 110, 92, 56, 103, 29, 145, 100, 114, 77, 92, 47, 63, 108, 152, 95, 22, 116
Offset: 1
Keywords
Examples
a(1)=5 is the least integer m>0 such that A136117(1)-P(m) is a pentagonal number, namely P(7)-P(5)=70-35=35=P(5). a(2)=4 is the least integer m>0 such that A136117(2)-P(m) is a pentagonal number, namely P(8)-P(4)=92-22=70=P(7).
Programs
-
PARI
A136118vect(n,i=-1)=vector(n,k,until(0,for(j=2,#n=sum2sqr((i+=6)^2+1),n[j]%6==[5,5]||next;n=n[j];break(2)));n[1]\6+1) /* This uses sum2sqr(), cf. A133388. Below some simpler but much slower code. */ my(P=A000326(n)=n*(3*n-1)/2,isPent(t)=P(sqrtint(t*2\3)+1)==t); for(i=1,299,for(j=1,(i+1)\sqrt(2),isPent(P(i)-P(j))&print1(j",")||next(2)))