cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A136119 Limiting sequence when we start with the positive integers (A000027) and delete in step n >= 1 the term at position n + a(n).

This page as a plain text file.
%I A136119 #61 Jul 04 2022 12:21:45
%S A136119 1,3,4,5,7,8,10,11,13,14,15,17,18,20,21,22,24,25,27,28,29,31,32,34,35,
%T A136119 37,38,39,41,42,44,45,46,48,49,51,52,54,55,56,58,59,61,62,63,65,66,68,
%U A136119 69,71,72,73,75,76,78,79,80,82,83,85,86,87,89,90,92,93,95,96,97,99,100
%N A136119 Limiting sequence when we start with the positive integers (A000027) and delete in step n >= 1 the term at position n + a(n).
%C A136119 Apparently a(n) = A001953(n-1)+1 = floor((n-1/2)*sqrt(2))+1 (confirmed for n < 20000) and a(n+1) - a(n) = A001030(n). From the definitions these conjectures are by no means obvious. Can they be proved? - _Klaus Brockhaus_, Apr 15 2008 [For an affirmative answer, see the Cloitre link.]
%C A136119 This is the s(n)-Wythoff sequence for s(n)=2n-1; see A184117 for the definition. Complement of A184119. - _Clark Kimberling_, Jan 09 2011
%D A136119 B. Cloitre, The golden sieve, preprint 2008
%H A136119 Alois P. Heinz, <a href="/A136119/b136119.txt">Table of n, a(n) for n = 1..1000</a>
%H A136119 D. X. Charles, <a href="http://pages.cs.wisc.edu/~cdx/Sieve.pdf">Sieve Methods</a>, July 2000, University of Wisconsin.
%H A136119 Benoit Cloitre, <a href="/A136119/a136119.txt">On the proof of Klaus Brockhaus's conjectures</a>
%H A136119 R. Eismann, <a href="http://arxiv.org/abs/0711.0865">Decomposition of natural numbers into weight X level + jump and application to a new classification of prime numbers</a>, arXiv:0711.0865 [math.NT], 2007-2010.
%H A136119 M. C. Wunderlich, <a href="http://matwbn.icm.edu.pl/ksiazki/aa/aa16/aa1614.pdf">A general class of sieve generated sequences</a>, Acta Arithmetica XVI,1969, pp.41-56.
%H A136119 <a href="/index/Si#sieve">Index entries for sequences generated by sieves</a>
%F A136119 a(n) = ceiling((n-1/2)*sqrt(2)). This can be proved in the same way as the formula given for A099267. There are some generalizations. For instance, it is possible to consider "a(n)+K*n" instead of "a(n)+n" for deleting terms where K=0,1,2,... is fixed. The constant involved in the Beatty sequence for the sequence of deleted terms then depends on K and equals (K + 1 + sqrt((K+1)^2 + 4))/2. K=0 is related to A099267. 1+A001954 is the complement sequence of this sequence A136119. - _Benoit Cloitre_, Apr 18 2008
%F A136119 a(n) = floor(1 + 2*sqrt(T(n-1))), with triangular numbers T(). - _Ralf Steiner_, Oct 23 2019
%F A136119 Lim_{n->inf}(a(n)/(n - 1)) = sqrt(2), with {a(n)/(n - 1)} decreasing. - _Ralf Steiner_, Oct 24 2019
%e A136119 First few steps are:
%e A136119 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,...
%e A136119 n = 1; delete term at position 1+a(1) = 2: 2;
%e A136119 1,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,...
%e A136119 n = 2; delete term at position 2+a(2) = 5: 6;
%e A136119 1,3,4,5,7,8,9,10,11,12,13,14,15,16,17,18,19,20,...
%e A136119 n = 3; delete term at position 3+a(3) = 7: 9;
%e A136119 1,3,4,5,7,8,10,11,12,13,14,15,16,17,18,19,20,...
%e A136119 n = 4; delete term at position 4+a(4) = 9: 12;
%e A136119 1,3,4,5,7,8,10,11,13,14,15,16,17,18,19,20,...
%e A136119 n = 5; delete term at position 5+a(5) = 12: 16;
%e A136119 1,3,4,5,7,8,10,11,13,14,15,17,18,19,20,...
%e A136119 n = 6; delete term at position 6+a(6) = 14: 19;
%e A136119 1,3,4,5,7,8,10,11,13,14,15,17,18,20,...
%t A136119 f[0] = Range[100]; f[n_] := f[n] = Module[{pos = n + f[n-1][[n]]}, If[pos > Length[f[n-1]], f[n-1], Delete[f[n-1], pos]]]; f[1]; f[n = 2]; While[f[n] != f[n-1], n++]; f[n] (* _Jean-François Alcover_, May 08 2019 *)
%t A136119 T[n_] := n (n + 1)/2; Table[1 + 2 Sqrt[T[n-1]] , {n, 1, 71}] // Floor (* _Ralf Steiner_, Oct 23 2019 *)
%o A136119 (Haskell)
%o A136119 import Data.List (delete)
%o A136119 a136119 n = a136119_list !! (n-1)
%o A136119 a136119_list = f [1..] where
%o A136119    f zs@(y:xs) = y : f (delete (zs !! y) xs)
%o A136119 -- _Reinhard Zumkeller_, May 17 2014
%o A136119 (Magma) [Ceiling((n-1/2)*Sqrt(2)): n in [1..100]]; // _Vincenzo Librandi_, Jul 01 2019
%o A136119 (PARI) apply( {A136119(n)=sqrtint(n*(n-1)*2)+1}, [1..99]) \\ _M. F. Hasler_, Jul 04 2022
%Y A136119 Cf. A000027, A001953 (floor((n+1/2)*sqrt(2))), A001030 (fixed under 1 -> 21, 2 -> 211), A136110, A137292.
%Y A136119 Cf. A000959, A099267.
%Y A136119 Cf. A242535.
%Y A136119 Cf. A000217 (T).
%K A136119 easy,nonn
%O A136119 1,2
%A A136119 _Ctibor O. Zizka_, Mar 16 2008
%E A136119 Edited and extended by _Klaus Brockhaus_, Apr 15 2008
%E A136119 An incorrect g.f. removed by _Alois P. Heinz_, Dec 14 2012