cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A136122 Integer log of (numerator of convergent to E / denominator of convergent to E) = A001414(A007676/A007677) = A001414(A007676)-A001414(A007677).

Original entry on oeis.org

2, 3, 3, 7, 12, 22, 39, 122, 48, 5, 879, 837, 12864, 31082, 16125, 12468, 1048203, -18599, 31975, -10373904, 8012, -21693, -1788161, -508374, -1326713, -281258, 78675955, 563498273327, 551589853, 2233965, 34039922629, -2425388265169, 325756512, -5767155, -781377548147642
Offset: 0

Views

Author

Carlos Alves, Dec 16 2007

Keywords

Comments

The integer log of a fraction p/q is A001414(p) - A001414(q).

Programs

  • Mathematica
    (* Substitute Pi for E in A136121. *)

A136133 Integer log of harmonic numbers.

Original entry on oeis.org

0, 1, 6, 3, 125, 5, 9, 743, 7105, 59, 925, 500, 943, 2118, 41214, 8415, 1138949, 39515, 7440381, 11166954, 18857978, 254, 584522, 467664, 312408461, 34395742156, 218280, 375035124, 4990290103, 28025, 2667653736605, 913550, 199539368422
Offset: 0

Views

Author

Carlos Alves, Dec 16 2007

Keywords

Comments

The integer log of a fraction p/q is A001414(p) - A001414(q).
Similar to A136121 or A136122: apply integer log (sopfr, or A001414) to the fractions in the harmonic numbers sequence (A001008/A002805).

Crossrefs

Programs

  • Mathematica
    sopfr = Function[x, Plus @@ Map[Times @@ # &, FactorInteger[x]]]; sopfr /@ HarmonicNumber[Range[40]]

A136134 Primes in A136133 (integer log of harmonic numbers sequence).

Original entry on oeis.org

3, 5, 743, 59, 312408461, 13669, 10920223, 85691034670497287, 795398356293665458781, 14301636907, 4280339305565030602944575375011
Offset: 0

Views

Author

Carlos Alves, Dec 16 2007

Keywords

Crossrefs

Programs

  • Mathematica
    sopfr = Function[x, Plus @@ Map[Times @@ # &, FactorInteger[x]]]; Select[sopfr /@ HarmonicNumber[Range[100]], PrimeQ]
Showing 1-3 of 3 results.