This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A136123 #19 Jan 30 2025 05:21:31 %S A136123 1,1,1,1,3,3,11,12,1,53,56,11,309,321,87,3,2119,2175,693,53,16687, %T A136123 17008,5934,680,11,148329,150504,55674,8064,309,1468457,1485465, %U A136123 572650,96370,5805,53,16019531,16170035,6429470,1200070,95575,2119 %N A136123 Triangle read by rows: T(n,k) is the number of permutations of {1,2,...,n} having k maximal strings of increasing consecutive integers (0<=k<=floor(n/2)). %C A136123 Row n has 1+floor(n/2) terms. Row sums are the factorials (A000142). Column 0 yields A000255. Column 1 yields A001277. Column 2 yields A001278. Column 3 yields A001279. Column 4 yields A001280. Sum(k*T(n,k),k>=0)=(n-2)!*(n^2 - 3n + 3)=A001564(n-2). %D A136123 F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 264, Table 7.6.1. %F A136123 G.f.: G(x,t) = Sum_{n>=0} n!*(((1-t)*x^2 - x)/((1-t)*x^2-1))^n. - _Vladeta Jovovic_ %e A136123 T(3,0)=3 because we have 132, 213 and 321; T(6,3)=3 because we have 125634, 341256, 563412. %e A136123 Triangle starts: %e A136123 1; %e A136123 1; %e A136123 1, 1; %e A136123 3, 3; %e A136123 11, 12, 1; %e A136123 53, 56, 11; %e A136123 309, 321, 87, 3; %e A136123 ... %p A136123 G:=Sum(factorial(n)*(((1-t)*x^2-x)/((1-t)*x^2-1))^n, n=0..infinity): Gser:= simplify(series(G,x=0,13)): for n from 0 to 11 do P[n]:=sort(coeff(Gser,x,n)) end do: for n from 0 to 11 do seq(coeff(P[n],t,j),j=0..floor((1/2)*n)) end do; # yields sequence in triangular form %p A136123 # alternative %p A136123 A136123 := proc(n,k) %p A136123 add( x^i*( ((1-y)*x-1)/((1-y)*x^2-1) )^i*i!,i=0..n+1) ; %p A136123 coeftayl(%,x=0,n) ; %p A136123 coeftayl(%,y=0,k) ; %p A136123 end proc: %p A136123 seq(seq( A136123(n,k),k=0..floor(n/2)),n=0..12) ; # _R. J. Mathar_, Jul 01 2022 %t A136123 T[n_, k_] := Sum[x^i*(((1-y)*x-1)/((1-y)*x^2-1))^i*i!, {i, 0, n+1}] // %t A136123 SeriesCoefficient[#, {x, 0, n}]& // %t A136123 SeriesCoefficient[#, {y, 0, k}]&; %t A136123 Table[Table[T[n, k], {k, 0, Floor[n/2]}], {n, 0, 12}] // Flatten (* _Jean-François Alcover_, May 09 2023, after _R. J. Mathar_ *) %Y A136123 Cf. A000142, A000255, A001277, A001278, A001279, A001280, A001564, A010029 (rows reversed). %K A136123 nonn,tabf %O A136123 0,5 %A A136123 _Emeric Deutsch_ and _Vladeta Jovovic_, Dec 17 2007