cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A136129 Triangle read by rows: T(n,k) is the number of directed, vertically convex polyominoes of height n and area k (n<= k <=n(n+1)/2).

Original entry on oeis.org

1, 0, 2, 1, 0, 0, 4, 5, 3, 1, 0, 0, 0, 8, 15, 17, 15, 9, 4, 1, 0, 0, 0, 0, 16, 39, 59, 75, 78, 67, 48, 29, 14, 5, 1, 0, 0, 0, 0, 0, 32, 95, 175, 269, 358, 419, 432, 400, 334, 250, 166, 97, 49, 20, 6, 1, 0, 0, 0, 0, 0, 0, 64, 223, 479, 845, 1300, 1801, 2269, 2622, 2805, 2794, 2593
Offset: 1

Views

Author

Emeric Deutsch, Jan 21 2008

Keywords

Comments

Row n contains n(n+1)/2 terms. Row sums yield A007808. Column sums yield the odd-indexed Fibonacci numbers (A001519).

Examples

			Triangle starts:
1;
0,2,1;
0,0,4,5,3,1;
0,0,0,8,15,17,15,9,4,1;
0,0,0,0,16,39,59,75,78,67,48,29,14,5,1;
		

Crossrefs

Programs

  • Maple
    A:=t*z*(1-t)/(1-t-2*t*z+t^2*z): B:=t^2*z*(z-1)/((1-t-2*t*z+t^2*z)*(1-t*z)): Aser:=simplify(series(A,z=0,12)): Bser:=simplify(series(B,z=0,12)): for n to 12 do A[n]:=coeff(Aser,z,n): B[n]:=coeff(Bser,z,n) end do: P[1]:=A[1]: for n from 2 to 7 do P[n]:=sort(expand(simplify(A[n]+add(B[n-j]*P[j]*t^j,j=1..n-1)))) end do: for n to 7 do seq(coeff(P[n],t,j),j=1..(1/2)*n*(n+1)) end do;

Formula

G.f. G(t,z) satisfies G(t,z)=zt(1-t)/(1-t-2zt+zt^2) +z(z-1)t^2*G(t,tz)/[(1-t-2zt+zt^2)(1-zt)]