This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A136157 #22 Dec 26 2023 23:47:48 %S A136157 3,1,3,0,1,3,0,0,1,3,0,0,0,1,3,0,0,0,0,1,3,0,0,0,0,0,1,3,0,0,0,0,0,0, %T A136157 1,3,0,0,0,0,0,0,0,1,3,0,0,0,0,0,0,0,0,1,3,0,0,0,0,0,0,0,0,0,1,3,0,0, %U A136157 0,0,0,0,0,0,0,0,1,3 %N A136157 Triangle by columns, (3, 1, 0, 0, 0, ...) in every column. %C A136157 Infinite lower triangular matrix with (3, 3, 3, ...) in the main diagonal and (1, 1, 1, ...) in the subdiagonal, with the rest zeros. %H A136157 G. C. Greubel, <a href="/A136157/b136157.txt">Rows n = 0..50 of the triangle, flattened</a> %F A136157 From _G. C. Greubel_, Dec 26 2023: (Start) %F A136157 T(n, k) = 3 if k = n, T(n, k) = 1 if k = n-1, otherwise T(n, k) = 0. %F A136157 T(n, k) = 2 + (-1)^(n+k) for k >= n-1, otherwise T(n, k) = 0. %F A136157 Sum_{k=0..n} T(n, k) = 4 - [n=0]. %F A136157 Sum_{k=0..n} (-1)^k*T(n, k) = (-2)^n + [n=0]. %F A136157 Sum_{k=0..floor(n/2)} T(n-k, k) = 2 + (-1)^n. %F A136157 Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = (2 + (-1)^n)*(-1)^floor(n/2). (End) %e A136157 First few rows of the triangle: %e A136157 3; %e A136157 1, 3; %e A136157 0, 1, 3; %e A136157 0, 0, 1, 3; %e A136157 0, 0, 0, 1, 3; %e A136157 0, 0, 0, 0, 1, 3; %e A136157 ... %t A136157 Table[PadLeft[{1,3},n,{0}],{n,0,20}]//Flatten (* _Harvey P. Dale_, Apr 04 2018 *) %o A136157 (Magma) %o A136157 function T(n,k) // T = A136157 %o A136157 if k gt n-2 then return 2 + (-1)^(n+k); %o A136157 else return 0; %o A136157 end if; %o A136157 end function; %o A136157 [T(n,k): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Dec 26 2023 %o A136157 (SageMath) %o A136157 def T(n,k): # T = A136157 %o A136157 if k>n-2: return 2 + (-1)^(n+k) %o A136157 else: return 0 %o A136157 flatten([[T(n,k) for k in range(n+1)] for n in range(13)]) # _G. C. Greubel_, Dec 26 2023 %Y A136157 Cf. A136158. %K A136157 nonn,tabl %O A136157 0,1 %A A136157 _Gary W. Adamson_, Dec 16 2007 %E A136157 Offset changed by _G. C. Greubel_, Dec 26 2023