cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A136159 A Chebyshev polynomial triangle of the first kind defined by T(n+1,x) = 3x*T(n,x) - T(n-1,x).

This page as a plain text file.
%I A136159 #20 Apr 15 2018 11:11:34
%S A136159 1,1,3,-1,9,-4,27,-15,1,81,-54,7,243,-189,36,-1,729,-648,162,-10,2187,
%T A136159 -2187,675,-66,1,6561,-7290,2673,-360,13,19683,-24057,10206,-1755,105,
%U A136159 -1,59049,-78732,37908,-7938,675,-16
%N A136159 A Chebyshev polynomial triangle of the first kind defined by T(n+1,x) = 3x*T(n,x) - T(n-1,x).
%C A136159 Row sums (unsigned) give A003688, (starting 1, 1, 4, 13, 43, 142, 469, ...).
%F A136159 T(0,x) = 1, T(1,x) = x, T(n+1,x) = 3x*T(n,x) - T(n-1,x).
%F A136159 G.f: (l - tx)/(1 - 3tx + t^2).
%F A136159 Given triangle A136158, shift down columns to allow for (1, 1, 2, 2, 3, 3, ...) terms in each row.
%e A136159 First few rows of the polynomials are:
%e A136159 1;
%e A136159 x;
%e A136159 3x^2 - 1;
%e A136159 9x^3 - 4x;
%e A136159 27x^4 - 15x^2 + 1;
%e A136159 81x^5 - 54x^3 + 7x;
%e A136159 243x^6 - 189x^4 + 36x^2 - 1;
%e A136159 729x^7 - 648x^5 + 162x^3 - 10x;
%e A136159 ...
%o A136159 (PARI) P(n) = if (n==0, 1, if (n==1, x, 3*x*P(n-1) - P(n-2)));
%o A136159 row(n) = select(x->x!=0, Vec(P(n))); \\ _Michel Marcus_, Apr 15 2018
%Y A136159 Cf. A136158, A003688.
%Y A136159 Cf. A000244, A006234, A080419, A080420, A080421, A080422, A080423. [_Philippe Deléham_, Sep 12 2009]
%K A136159 tabf,sign
%O A136159 0,3
%A A136159 _Gary W. Adamson_, Dec 16 2007
%E A136159 Corrected and extended by _Philippe Deléham_, Sep 12 2009
%E A136159 Keyword tabf set by _Michel Marcus_, Apr 15 2018