This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A136159 #20 Apr 15 2018 11:11:34 %S A136159 1,1,3,-1,9,-4,27,-15,1,81,-54,7,243,-189,36,-1,729,-648,162,-10,2187, %T A136159 -2187,675,-66,1,6561,-7290,2673,-360,13,19683,-24057,10206,-1755,105, %U A136159 -1,59049,-78732,37908,-7938,675,-16 %N A136159 A Chebyshev polynomial triangle of the first kind defined by T(n+1,x) = 3x*T(n,x) - T(n-1,x). %C A136159 Row sums (unsigned) give A003688, (starting 1, 1, 4, 13, 43, 142, 469, ...). %F A136159 T(0,x) = 1, T(1,x) = x, T(n+1,x) = 3x*T(n,x) - T(n-1,x). %F A136159 G.f: (l - tx)/(1 - 3tx + t^2). %F A136159 Given triangle A136158, shift down columns to allow for (1, 1, 2, 2, 3, 3, ...) terms in each row. %e A136159 First few rows of the polynomials are: %e A136159 1; %e A136159 x; %e A136159 3x^2 - 1; %e A136159 9x^3 - 4x; %e A136159 27x^4 - 15x^2 + 1; %e A136159 81x^5 - 54x^3 + 7x; %e A136159 243x^6 - 189x^4 + 36x^2 - 1; %e A136159 729x^7 - 648x^5 + 162x^3 - 10x; %e A136159 ... %o A136159 (PARI) P(n) = if (n==0, 1, if (n==1, x, 3*x*P(n-1) - P(n-2))); %o A136159 row(n) = select(x->x!=0, Vec(P(n))); \\ _Michel Marcus_, Apr 15 2018 %Y A136159 Cf. A136158, A003688. %Y A136159 Cf. A000244, A006234, A080419, A080420, A080421, A080422, A080423. [_Philippe Deléham_, Sep 12 2009] %K A136159 tabf,sign %O A136159 0,3 %A A136159 _Gary W. Adamson_, Dec 16 2007 %E A136159 Corrected and extended by _Philippe Deléham_, Sep 12 2009 %E A136159 Keyword tabf set by _Michel Marcus_, Apr 15 2018