This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A136175 #27 Jun 07 2022 17:14:03 %S A136175 1,2,3,4,6,5,7,11,9,8,13,20,17,15,10,24,37,31,28,19,12,44,68,57,51,35, %T A136175 22,14,81,125,105,94,64,41,26,16,149,230,193,173,118,75,48,30,18,274, %U A136175 423,355,318,217,138,88,55,33,21,504,778,653,585,399,254,162,101,61,39,23 %N A136175 Tribonacci array, T(n,k). %C A136175 As an interspersion (and dispersion), the array is, as a sequence, a permutation of the positive integers. Column k consists of the numbers m such that the least summand in the tribonacci representation of m is T(1,k). For example, column 1 consists of numbers with least summand 1. This array arises from tribonacci representations in much the same way that the Wythoff array, A035513, arises from Fibonacci (or Zeckendorf) representations. %C A136175 From _Abel Amene_, Jul 29 2012: (Start) %C A136175 (Row 1) = A000073 (offset=4) a(0)=0, a(1)=0, a(2)=1 %C A136175 (Row 2) = A001590 (offset=5) a(0)=0, a(1)=1, a(2)=0 %C A136175 (Row 3) = A000213 (offset=4) a(0)=1, a(1)=1, a(2)=1 %C A136175 (Row 4) = A214899 (offset=5) a(0)=2, a(1)=1, a(2)=2 %C A136175 (Row 5) = A020992 (offset=6) a(0)=0, a(1)=2, a(2)=1 %C A136175 (Row 6) = A100683 (offset=6) a(0)=-1,a(1)=2, a(2)=2 %C A136175 (Row 7) = A135491 (offset=4) a(0)=2, a(1)=4, a(2)=8 %C A136175 (Row 8) = A214727 (offset=6) a(0)=1, a(1)=1, a(2)=2 %C A136175 (Row 9) = A081172 (offset=8) a(0)=1, a(1)=1, a(2)=0 %C A136175 (column 1) = A003265 %C A136175 (column 2) = A353083 %C A136175 (End) [Corrected and extended by _John Keith_, May 09 2022] %F A136175 T(1,1)=1, T(1,2)=2, T(1,3)=4, T(1,k)=T(1,k-1)+T(1,k-2)+T(1,k-3) for k>3. Row 1 is the tribonacci basis; write B(k)=T(1,k). Each row satisfies the recurrence T(n,k)=T(n,k-1)+T(n,k-2)+T(n,k-3). T(n,1) is least number not in an earlier row. If T(n,1) has tribonacci representation B(k(1))+B(k(2))+...+B(k(m)), then T(n,2) = B(k(2))+B(k(3))+...+B(k(m+1)) and T(n,3) = B(k(3))+B(k(4))+...+B(k(m+2)). (Continued shifting of indices gives the other terms in row n, also.) %e A136175 Northwest corner: %e A136175 1 2 4 7 13 24 44 81 149 274 504 %e A136175 3 6 11 20 37 68 125 230 423 778 %e A136175 5 9 17 31 57 105 193 355 653 %e A136175 8 15 28 51 94 173 318 585 %e A136175 10 19 35 64 118 217 399 %e A136175 12 22 41 75 138 254 %e A136175 14 26 48 88 162 %e A136175 16 30 55 101 %e A136175 18 33 61 %e A136175 21 39 %e A136175 23 %p A136175 # maximum index in A73 such that A73 <= n. %p A136175 A73floorIdx := proc(n) %p A136175 local k ; %p A136175 for k from 3 do %p A136175 if A000073(k) = n then %p A136175 return k ; %p A136175 elif A000073(k) > n then %p A136175 return k -1 ; %p A136175 end if ; %p A136175 end do: %p A136175 end proc: %p A136175 # tribonacci expansion coeffs of n %p A136175 A278038 := proc(n) %p A136175 local k,L,nres ; %p A136175 k := A73floorIdx(n) ; %p A136175 L := [1] ; %p A136175 nres := n-A000073(k) ; %p A136175 while k >= 4 do %p A136175 k := k-1 ; %p A136175 if nres >= A000073(k) then %p A136175 L := [1,op(L)] ; %p A136175 nres := nres-A000073(k) ; %p A136175 else %p A136175 L := [0,op(L)] ; %p A136175 end if ; %p A136175 end do: %p A136175 return L ; %p A136175 end proc: %p A136175 A278038inv := proc(L) %p A136175 add( A000073(i+2)*op(i,L),i=1..nops(L)) ; %p A136175 end proc: %p A136175 A135175 := proc(n,k) %p A136175 option remember ; %p A136175 local a,known,prev,nprev,kprev,freb ; %p A136175 if n =1 then %p A136175 A000073(k+2) ; %p A136175 elif k>3 then %p A136175 procname(n,k-1)+procname(n,k-2)+procname(n,k-3) ; %p A136175 else %p A136175 if k = 1 then %p A136175 for a from 1 do %p A136175 known := false ; %p A136175 for nprev from 1 to n-1 do %p A136175 for kprev from 1 do %p A136175 if procname(nprev,kprev) > a then %p A136175 break ; %p A136175 elif procname(nprev,kprev) = a then %p A136175 known := true ; %p A136175 end if; %p A136175 end do: %p A136175 end do: %p A136175 if not known then %p A136175 return a ; %p A136175 end if; %p A136175 end do: %p A136175 else %p A136175 prev := procname(n,k-1) ; %p A136175 freb := A278038(prev) ; %p A136175 return A278038inv([0,op(freb)]) ; %p A136175 end if; %p A136175 end if; %p A136175 end proc: %p A136175 seq(seq(A135175(n,d-n),n=1..d-1),d=2..12) ; # _R. J. Mathar_, Jun 07 2022 %Y A136175 Cf. A035513, A353083, A353084. %K A136175 nonn,tabl %O A136175 1,2 %A A136175 _Clark Kimberling_, Dec 18 2007 %E A136175 T(3, 4) corrected and more terms by _John Keith_, May 09 2022