This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A136206 #10 Sep 21 2015 01:38:22 %S A136206 1,1,1,1,1,3,4,3,1,1,7,13,19,13,6,1,1,15,40,85,96,75,35,10,1,1,31,121, %T A136206 335,560,616,471,240,80,15,1,1,63,364,1253,2891,4221,4502,3353,1806, %U A136206 665,161,21,1,1,127,1093,4599,13923,26222,36225,36205,26895,14756,5887,1638,294,28,1 %N A136206 Triangle H(n,j) (n=1,2,3,..., j=2,3,4,...) read by rows: let X(k,l,n) := Stirling2(n,k)*Stirling2(k,l) for 1<=k<=n and 1<=l<=k. Then H(n,j)= sum_{k+l=j, 1<=k<=n and 1<=l<=k} X(k,l,n). %C A136206 Row n has 2n-1 terms. The row sums are given by A000258. %H A136206 Gottfried Helms, <a href="/A136206/a136206.txt">Comments on A136206 and A136248</a> %e A136206 Triangle begins: %e A136206 ..........................1 %e A136206 .....................1....1....1 %e A136206 ................1....3....4....3....1 %e A136206 ...........1....7...13...19...13....6...1 %e A136206 ......1...15...40...85...96...75...35..10..1 %e A136206 ..1..31..121..335..560..616..471..240..80..15..1 %e A136206 ................................................. %e A136206 Assume a matrix-function rowshift(M) which computes M1 = rowshift(M) in the following way: M = %e A136206 [a,b,c,...] %e A136206 [k,l,m,...] %e A136206 [r,s,t,...] %e A136206 [.........] %e A136206 becomes M1 = %e A136206 [a,b,c, ......] %e A136206 [0,k,l,m, ....] %e A136206 [0,0,r,s,t,...] %e A136206 [ ............] %e A136206 Define the lower-triangular matrix of Stirling-numbers of the second kind S = %e A136206 [1 0 0 0 ...] %e A136206 [1 1 0 0 ...] %e A136206 [1 3 1 0 ...] %e A136206 [1 7 6 1 ...] %e A136206 [ ..........] %e A136206 Then with H0 = %e A136206 [1] %e A136206 [1] %e A136206 [1] %e A136206 [1] %e A136206 ... %e A136206 we have %e A136206 H1 = S * rowshift(H0) \\ = S %e A136206 H2 = S * rowshift(H1) %e A136206 H3 = S * rowshift(H2) %e A136206 ... %e A136206 H1 = %e A136206 1 . . . . %e A136206 1 1 . . . %e A136206 1 3 1 . . %e A136206 1 7 6 1 . %e A136206 1 15 25 10 1 %e A136206 H2= %e A136206 1 . . . . . . . . %e A136206 1 1 1 . . . . . . %e A136206 1 3 4 3 1 . . . . %e A136206 1 7 13 19 13 6 1 . . %e A136206 1 15 40 85 96 75 35 10 1 %e A136206 H3= %e A136206 1 . . . . . . . . . . . . %e A136206 1 1 1 1 . . . . . . . . . %e A136206 1 3 4 6 4 3 1 . . . . . . %e A136206 1 7 13 26 31 31 25 13 6 1 . . . %e A136206 1 15 40 100 171 220 255 215 156 85 35 10 1 %e A136206 (based on the Maple implementation from _R. J. Mathar_) %p A136206 # From _R. J. Mathar_: (Start) %p A136206 X := proc(k,l,n) %p A136206 if k >=1 and k <=n and l >=1 and l <= n then %p A136206 combinat[stirling2](n,k)*combinat[stirling2](k,l) ; %p A136206 else %p A136206 0 ; %p A136206 fi ; %p A136206 end: %p A136206 H := proc(n,j) %p A136206 add( X(j-l,l,n),l=1..floor(j/2)) ; %p A136206 end: %p A136206 for n from 1 to 10 do %p A136206 for j from 2 to 2*n do %p A136206 printf("%d ",H(n,j)) ; %p A136206 od: %p A136206 printf("\n") ; %p A136206 od: %p A136206 # (End) %Y A136206 Cf. A136248. %K A136206 nonn,tabf %O A136206 1,6 %A A136206 _Gottfried Helms_, Apr 15 2008 %E A136206 Definition in terms of Stirling2 numbers found by _R. J. Mathar_, Apr 15 2008