This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A136207 #12 Feb 16 2025 08:33:07 %S A136207 5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,73,79,83,89,97,101, %T A136207 103,107,109,113,131,137,151,157,163,167,173,179,191,193,197,199,223, %U A136207 227,229,233,239,251,257,263,269,271,277,283,307,311,313,317,331,337 %N A136207 Primes p such that p-6 or p+6 is prime. %C A136207 Either or both of (p-6) and (p+6) is/are prime. - _Harvey P. Dale_, Jun 22 2019 %H A136207 Lei Zhou, <a href="/A136207/b136207.txt">Table of n, a(n) for n = 1..10000</a> %H A136207 Eric Weisstein's World of Math, <a href="https://mathworld.wolfram.com/SexyPrimes.html">Sexy Primes</a>. [The definition in this webpage is unsatisfactory, because it defines a "sexy prime" as a pair of primes.- _N. J. A. Sloane_, Mar 07 2021] %H A136207 Wikipedia, <a href="http://en.wikipedia.org/wiki/Sexy_prime">Sexy Primes</a> %p A136207 isA136207 := proc(n) %p A136207 if isprime(n) then %p A136207 if isprime(n+6) or isprime(n-6) then %p A136207 true; %p A136207 else %p A136207 false; %p A136207 end if; %p A136207 else %p A136207 false ; %p A136207 end if; %p A136207 end proc: %p A136207 A136207 := proc(n) %p A136207 option remember; %p A136207 local a; %p A136207 if n = 1 then %p A136207 5 ; %p A136207 else %p A136207 a := nextprime(procname(n-1)) ; %p A136207 while true do %p A136207 if isA136207(a) then %p A136207 return a; %p A136207 else %p A136207 a := nextprime(a) ; %p A136207 end if; %p A136207 end do: %p A136207 end if; %p A136207 end proc: %p A136207 seq(A136207(n),n=1..80) ; # _R. J. Mathar_, Jun 10 2024 %t A136207 dd = 6; DistancePrimesQ1 = (PrimeQ[ # ] && PrimeQ[ # + dd]) &; DistancePrimesQ2 = (PrimeQ[ # ] && PrimeQ[ # - dd] && (# > dd)) &; DistancePrimesQQ = (DistancePrimesQ1[ # ] || DistancePrimesQ2[ # ]) &; DistancePrimes = Select[Range[ # ], DistancePrimesQQ] &; DistancePrimes[1000] %t A136207 Alternative by _Lei Zhou_: %t A136207 p = 3; Table[While[p = NextPrime[p]; ! (PrimeQ[p - 6] || PrimeQ[p + 6])]; p, {n, 1, 100}] %t A136207 Select[Prime[Range[3,100]],AnyTrue[#+{6,-6},PrimeQ]&] (* Requires Mathematica version 10 or later *) (* _Harvey P. Dale_, Jun 22 2019 *) %Y A136207 Cf. A023201, A046117, A140546 (complement). %K A136207 nonn %O A136207 1,1 %A A136207 _Carlos Alves_, Dec 21 2007