cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A136232 Triangle, read by rows, equal to the matrix 4th power of triangle A136220.

This page as a plain text file.
%I A136232 #4 Mar 14 2015 11:56:23
%S A136232 1,4,1,24,8,1,198,76,12,1,2116,888,156,16,1,28052,12542,2350,264,20,1,
%T A136232 446560,209506,41034,4864,400,24,1,8325700,4058806,821562,100988,8710,
%U A136232 564,28,1,178284892,89706276,18631332,2352116,209440,14168,756,32,1
%N A136232 Triangle, read by rows, equal to the matrix 4th power of triangle A136220.
%F A136232 Column k of this triangle = column 1 of U^(k+1) where U = A136228.
%e A136232 This triangle P^4 begins:
%e A136232 1,
%e A136232 4, 1;
%e A136232 24, 8, 1;
%e A136232 198, 76, 12, 1;
%e A136232 2116, 888, 156, 16, 1;
%e A136232 28052, 12542, 2350, 264, 20, 1;
%e A136232 446560, 209506, 41034, 4864, 400, 24, 1;
%e A136232 8325700, 4058806, 821562, 100988, 8710, 564, 28, 1;
%e A136232 178284892, 89706276, 18631332, 2352116, 209440, 14168, 756, 32, 1; ...
%e A136232 where column k = column 1 of U^(k+1);
%e A136232 triangle U = A136228 begins:
%e A136232 1;
%e A136232 1, 1;
%e A136232 3, 4, 1;
%e A136232 15, 24, 7, 1;
%e A136232 108, 198, 63, 10, 1;
%e A136232 1036, 2116, 714, 120, 13, 1;
%e A136232 12569, 28052, 9884, 1725, 195, 16, 1; ...
%e A136232 where column k of U = column 0 of P^(3k+1) and
%e A136232 triangle P = A136220 begins:
%e A136232 1;
%e A136232 1, 1;
%e A136232 3, 2, 1;
%e A136232 15, 10, 3, 1;
%e A136232 108, 75, 21, 4, 1;
%e A136232 1036, 753, 208, 36, 5, 1;
%e A136232 12569, 9534, 2637, 442, 55, 6, 1; ...
%o A136232 (PARI) {T(n,k)=local(P=Mat(1),U,PShR);if(n>0,for(i=0,n, PShR=matrix(#P,#P, r,c, if(r>=c,if(r==c,1,if(c==1,0,P[r-1,c-1]))));U=P*PShR^2; U=matrix(#P+1, #P+1, r,c, if(r>=c, if(r<#P+1,U[r,c], if(c==1,(P^3)[ #P,1],(P^(3*c-1))[r-c+1,1])))); P=matrix(#U, #U, r,c, if(r>=c, if(r<#R,P[r,c], (U^c)[r-c+1,1])))));(P^4)[n+1,k+1]}
%Y A136232 Cf. A136229 (column 0); related tables: A136220 (P), A136228 (U).
%K A136232 nonn,tabl
%O A136232 0,2
%A A136232 _Paul D. Hanna_, Jan 28 2008