cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A136262 Integral form of A137286: Triangle of coefficients of Integral form of recursive orthogonal Hermite polynomials given in Hochstadt's book: n*IP(x, n) = x*P(x, n ) - n*P'(x, n - 2); derived to a constant from the differential recursion: P''(x,n)=x*P'(x,n)-n*P(x,n).

Table of values

n a(n)
1 1
2 -1
3 1
4 0
5 -2
6 1
7 5
8 -2
9 -3
10 1
11 0
12 18
13 -5
14 -4
15 1
16 -33
17 8
18 42
19 -9
20 -5
21 1
22 0
23 -174
24 33
25 80
26 -14
27 -6
28 1
29 279
30 -48
31 -555
32 87
33 135
34 -20
35 -7
36 1
37 0
38 1950
39 -279
40 -1380
41 185
42 210
43 -27
44 -8
45 1
46 -2895
47 384
48 7920
49 -975
50 -2940
51 345
52 308
53 -35
54 -9
55 1
56 0
57 -25290
58 2895
59 24360
60 -2640
61 -5628
62 588
63 432
64 -44
65 -10
66 1
67 35685
68 -3840
69 -125055

List of values

[1, -1, 1, 0, -2, 1, 5, -2, -3, 1, 0, 18, -5, -4, 1, -33, 8, 42, -9, -5, 1, 0, -174, 33, 80, -14, -6, 1, 279, -48, -555, 87, 135, -20, -7, 1, 0, 1950, -279, -1380, 185, 210, -27, -8, 1, -2895, 384, 7920, -975, -2940, 345, 308, -35, -9, 1, 0, -25290, 2895, 24360, -2640, -5628, 588, 432, -44, -10, 1, 35685, -3840, -125055]