This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A136264 #41 Dec 20 2023 15:57:29 %S A136264 1,0,-16,-64,-160,-320,-560,-896,-1344,-1920,-2640,-3520,-4576,-5824, %T A136264 -7280,-8960,-10880,-13056,-15504,-18240,-21280,-24640,-28336,-32384, %U A136264 -36800,-41600,-46800,-52416,-58464,-64960,-71920,-79360,-87296,-95744,-104720,-114240,-124320,-134976,-146224,-158080 %N A136264 Expansion of g.f. (1+x)^2*(x^2-6*x+1)/(x-1)^4. %C A136264 This g.f. is the eighth power of the spontaneous magnetization series for the two-dimensional square lattice in the parameter x = exp(-4J/kT), cf. A002928. %D A136264 Terrel L. Hill, Statistical Mechanics: Principles and Selected Applications, Dover, New York, 1956, page 331. See eq. 44.12 for the g.f. with x replaced by x^2. %H A136264 M. R. Sepanski, <a href="http://www.combinatorics.org/ojs/index.php/eljc/article/view/v21i1p32">On Divisibility of Convolutions of Central Binomial Coefficients</a>, Electronic Journal of Combinatorics, 21 (1) 2014, #P1.32. %H A136264 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1). %F A136264 a(n) = 8*n*(1 - n^2)/3, n>0. - _R. J. Mathar_, Mar 09 2009 %F A136264 E.g.f.: 1 - 8*exp(x)*x^2*(3 + x)/3. - _Stefano Spezia_, Oct 11 2023 %t A136264 CoefficientList[Series[(1+x)^2(x^2-6x+1)/(x-1)^4,{x,0,40}],x] (* or *) LinearRecurrence[{4,-6,4,-1},{1,0,-16,-64,-160},40] (* _Harvey P. Dale_, Mar 15 2020 *) %o A136264 (PARI) Vec((1+x)^2*(x^2-6*x+1)/(x-1)^4 + O(x^100)) \\ _Altug Alkan_, Oct 26 2015 %Y A136264 Essentially the same as A102860. Cf. A115046, A002928. %K A136264 sign,easy %O A136264 0,3 %A A136264 _Roger L. Bagula_, Apr 07 2008