cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A136298 a(n) = 3*a(n-1) - 4*a(n-3), with a(0)=1, a(1)=2, a(2)=4, a(3)=9.

This page as a plain text file.
%I A136298 #7 Apr 13 2021 01:36:40
%S A136298 1,2,4,9,19,41,87,185,391,825,1735,3641,7623,15929,33223,69177,143815,
%T A136298 298553,618951,1281593,2650567,5475897,11301319,23301689,48001479,
%U A136298 98799161,203190727,417566265,857502151,1759743545,3608965575
%N A136298 a(n) = 3*a(n-1) - 4*a(n-3), with a(0)=1, a(1)=2, a(2)=4, a(3)=9.
%H A136298 G. C. Greubel, <a href="/A136298/b136298.txt">Table of n, a(n) for n = 0..1000</a>
%H A136298 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,0,-4).
%F A136298 From _R. J. Mathar_, Apr 04 2008: (Start)
%F A136298 O.g.f.: (1 -x -2*x^2 +x^3)/((1+x)*(1-2*x)^2).
%F A136298 a(n) = (7*2^n - (-1)^n)/9 + A001787(n+1)/12 if n>0. (End)
%F A136298 From _G. C. Greubel_, Apr 12 2021: (Start)
%F A136298 a(n) = (2^(n-2)*(3*n+31) - (-1)^n)/9 + (1/4)*[n=0].
%F A136298 E.g.f.: (1/36)*(9 - 4*exp(-x) + (31 + 6*x)*exp(2*x)). (End)
%t A136298 LinearRecurrence[{3,0,-4}, {1,2,4,9}, 41] (* _G. C. Greubel_, Apr 12 2021 *)
%o A136298 (Magma) [1] cat [(2^(n-2)*(31+3*n) - (-1)^n)/9: n in [1..40]]; // _G. C. Greubel_, Apr 12 2021
%o A136298 (Sage) [1]+[(2^(n-2)*(31+3*n) - (-1)^n)/9 for n in (1..40)] # _G. C. Greubel_, Apr 12 2021
%Y A136298 Cf. A001787, A078039.
%K A136298 nonn,easy
%O A136298 0,2
%A A136298 _Paul Curtz_, Mar 22 2008
%E A136298 More terms from _R. J. Mathar_, Apr 04 2008