This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A136302 #25 Apr 19 2021 08:15:43 %S A136302 2,6,15,35,81,188,437,1016,2362,5491,12765,29675,68986,160373,372822, %T A136302 866706,2014847,4683951,10888865,25313540,58846841,136802308, %U A136302 318026782,739322571,1718716457,3995531011,9288482690,21593102505,50197873146,116695897118,271285047567 %N A136302 Transform of A000027 by the T_{1,1} transformation (see link). %H A136302 G. C. Greubel, <a href="/A136302/b136302.txt">Table of n, a(n) for n = 1..1000</a> %H A136302 Richard Choulet, <a href="https://www.apmep.fr/IMG/pdf/curtz1.pdf">Curtz-like transformation</a>. %H A136302 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-2,1). %F A136302 G.f.: z*(2 + z^2)/(1 - 3*z + 2*z^2 - z^3). %F A136302 a(n+3) = 3*a(n+2) - 2*a(n+1) + a(n) (n>=0). - _Richard Choulet_, Apr 07 2009 %F A136302 a(n) = 2*A095263(n) + A095263(n-2). - _R. J. Mathar_, Feb 29 2016 %p A136302 a:= n-> (<<6|2|1>>. <<3|1|0>, <-2|0|1>, <1|0|0>>^n)[1, 3]: %p A136302 seq(a(n), n=1..40); # _Alois P. Heinz_, Aug 14 2008 %t A136302 LinearRecurrence[{3,-2,1}, {2,6,15}, 41] (* _G. C. Greubel_, Apr 12 2021 *) %o A136302 (Magma) I:=[2,6,15]; [n le 3 select I[n] else 3*Self(n-1) -2*Self(n-2) +Self(n-3): n in [1..41]]; // _G. C. Greubel_, Apr 12 2021 %o A136302 (Sage) %o A136302 def A136302_list(prec): %o A136302 P.<x> = PowerSeriesRing(ZZ, prec) %o A136302 return P( x*(2+x^2)/(1-3*x+2*x^2-x^3) ).list() %o A136302 a=A136302_list(41); a[1:] # _G. C. Greubel_, Apr 12 2021 %Y A136302 Cf. A095263, A136303, A136304, A136305. %K A136302 nonn,easy %O A136302 1,1 %A A136302 _Richard Choulet_, Mar 22 2008 %E A136302 More terms from _Alois P. Heinz_, Aug 14 2008