cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A136312 Cubes that are the sum of two or more consecutive positive squares.

This page as a plain text file.
%I A136312 #18 Jan 24 2016 16:42:32
%S A136312 103823,274625,781229961,10091699281,22425768000,1853614522304,
%T A136312 2277044900416,4708686519081,6168761704000,82312875000000,
%U A136312 235125028708361,259266910222125,269648738245125,291658484677013,980893000925279,1568173521032000,1816249897646729
%N A136312 Cubes that are the sum of two or more consecutive positive squares.
%H A136312 Chai Wah Wu, <a href="/A136312/b136312.txt">Table of n, a(n) for n = 1..45</a>
%e A136312 From _Donovan Johnson_, Aug 02 2013: (Start)
%e A136312 103823 = 47^3 = 22^2 +...+ 68^2
%e A136312 274625 = 65^3 = 90^2 +...+ 115^2
%e A136312 781229961 = 921^3 = 2115^2 +...+ 2276^2
%e A136312 10091699281 = 2161^3 = 989^2 +...+ 3149^2
%e A136312 22425768000 = 2820^3 = 261^2 +...+ 4067^2
%e A136312 1853614522304 = 12284^3 = 23017^2 +...+ 26087^2
%e A136312 2277044900416 = 13156^3 = 17354^2 +...+ 22930^2
%e A136312 4708686519081 = 16761^3 = 24978^2 +...+ 30971^2
%e A136312 6168761704000 = 18340^3 = 125090^2 +...+ 125482^2
%e A136312 82312875000000 = 43500^3 = 83868^2 +...+ 94235^2
%e A136312 235125028708361 = 61721^3 = 24079^2 +...+ 89600^2
%e A136312 259266910222125 = 63765^3 = 64791^2 +...+ 101632^2
%e A136312 269648738245125 = 64605^3 = 248058^2 +...+ 252364^2
%e A136312 291658484677013 = 66317^3 = 189432^2 +...+ 197233^2
%e A136312 980893000925279 = 99359^3 = 45450^2 +...+ 144808^2
%e A136312 1568173521032000 = 116180^3 = 239806^2 +...+ 264454^2
%e A136312 1816249897646729 = 122009^3 = 279608^2 +...+ 301138^2 (End)
%e A136312 From _Chai Wah Wu_, Jan 16 2016: (Start)
%e A136312 3164933091345661 = 146821^3 = 77289^2 +...+ 215130^2
%e A136312 4047882458821811 = 159371^3 = 84755^2 +...+ 233631^2
%e A136312 17609483239992125 = 260165^3 = 254786^2 +...+ 410884^2
%e A136312 19593033022705472 = 269588^3 = 250354^2 +...+ 420721^2
%e A136312 31231769524613559 = 314919^3 = 927208^2 +...+ 962198^2
%e A136312 65514186944297000 = 403130^3 = 1033993^2 +...+ 1091959^2
%e A136312 143956092348157375 = 524095^3 = 1015471^2 +...+ 1139347^2
%e A136312 329053482838576341 = 690381^3 = 52911^2 +...+ 995751^2
%e A136312 538042267367704000 = 813340^3 = 733892^2 +...+ 1261891^2
%e A136312 566038214864690329 = 827209^3 = 2312937^2 +...+ 2414242^2
%e A136312 656781041834164521 = 869241^3 = 772114^2 +...+ 1344540^2
%e A136312 958188654740652544 = 985864^3 = 838168^2 +...+ 1512983^2
%e A136312 1741057552217028375 = 1203015^3 = 2665648^2 +...+ 2891070^2
%e A136312 2453606982838035081 = 1348761^3 = 2465960^2 +...+ 2817081^2
%e A136312 7324939312836848704 = 1942084^3 = 772001^2 +...+ 2820383^2
%e A136312 31128405637777584128 = 3145712^3 = 12484417^2 +...+ 12681023^2
%e A136312 47930487637898407256 = 3632486^3 = 7350251^2 +...+ 8147761^2
%e A136312 57859343297173518625 = 3867745^3 = 37789066^2 +...+ 37829539^2
%e A136312 58047677333527653953 = 3871937^3 = 12618972^2 +...+ 12973453^2
%e A136312 95340837894501722977 = 4568353^3 = 2089689^2 +...+ 6658041^2
%e A136312 115237534945436189000 = 4866290^3 = 530792^2 +...+ 7019416^2
%e A136312 192722849299621656989 = 5776229^3 = 6484162^2 +...+ 9475619^2
%e A136312 357785493772998213000 = 7099170^3 = 7766186^2 +...+ 11552409^2
%e A136312 595861293215117277369 = 8414889^3 = 17896962^2 +...+ 19591724^2
%e A136312 1040700726329018473909 = 10133869^3 = 26869573^2 +...+ 28239958^2
%e A136312 2330938094537294907904 = 13258984^3 = 2662775^2 +...+ 19139958^2
%e A136312 5464432352858170025529 = 17613609^3 = 31917186^2 +...+ 36570028^2
%e A136312 6591770507847656234375 = 18749975^3 = 93374626^2 +...+ 94124624^2
%e A136312 (End)
%o A136312 (PARI) find(lim)=my(t,v=List());for(k=2,(3*lim)^(1/3),t=k*(k-1)*(2*k-1)/6;for(n=k,(k-1)/2+sqrt(lim/k-(k^2-1)/12),if(ispower(t+=n^2-(n-k)^2,3),listput(v,t))));vecsort(Vec(v),,8) \\ _Charles R Greathouse IV_, Jun 11 2011
%Y A136312 Cf. A131643, A000578, A000290.
%K A136312 nonn
%O A136312 1,1
%A A136312 _Donovan Johnson_, Mar 23 2008
%E A136312 Edited definition and a(11)-a(14) from _Donovan Johnson_, Oct 01 2010
%E A136312 a(15)-a(16) from _Donovan Johnson_, Jun 11 2011
%E A136312 a(17) from _Donovan Johnson_, Aug 02 2013