This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A136333 #26 Feb 15 2024 01:56:01 %S A136333 1,3,7,9,11,13,17,19,31,33,37,39,71,73,77,79,91,93,97,99,111,113,117, %T A136333 119,131,133,137,139,171,173,177,179,191,193,197,199,311,313,317,319, %U A136333 331,333,337,339,371,373,377,379,391,393,397,399,711,713,717,719,731 %N A136333 Numbers containing only digits coprime to 10 in their decimal representation. %C A136333 Numbers containing digits 1,3,7,9 only, or, numbers written in base 4 (cf. A007090) with digits mapped by: 0->1, 1->3, 2->7 and 3->9. - _Reinhard Zumkeller_, Jul 17 2014 %H A136333 Reinhard Zumkeller, <a href="/A136333/b136333.txt">Table of n, a(n) for n = 1..10000</a> %H A136333 Robert Baillie and Thomas Schmelzer, <a href="https://library.wolfram.com/infocenter/MathSource/7166/">Summing Kempner's Curious (Slowly-Convergent) Series</a>, Mathematica Notebook kempnerSums.nb, Wolfram Library Archive, 2008. %H A136333 <a href="/index/Ar#10-automatic">Index entries for 10-automatic sequences</a>. %F A136333 Sum_{n>=1} 1/a(n) = 2.395867871130444522329053889312125689319669370758630349552737883715872077555... (calculated using Baillie and Schmelzer's kempnerSums.nb, see Links). - _Amiram Eldar_, Feb 15 2024 %t A136333 fQ[n_] := Block[{s = {1, 3, 7, 9}}, Union[Join[s, IntegerDigits@ n]] == s]; Select[ Range@ 1000, fQ] (* or *) %t A136333 depth = 3; FromDigits@# & /@ FlattenAt[ Table[ Tuples[{1, 3, 7, 9}, n], {n, depth}], {#} & /@ Range[depth]] (* _Robert G. Wilson v_, Jul 02 2014 *) %o A136333 (Haskell) %o A136333 import Data.List (intersect) %o A136333 a136333 n = a136333_list !! (n-1) %o A136333 a136333_list = filter (null . intersect "024568" . show) [1..] %o A136333 -- _Reinhard Zumkeller_, Jul 17 2014 %o A136333 (PARI) isok(m) = my(d=digits(m)); apply(x->gcd(x, 10), d) == vector(#d, k, 1); \\ _Michel Marcus_, Feb 25 2022 %Y A136333 Cf. A007090, A091633 (primes), A245193. %K A136333 nonn,base,easy %O A136333 1,2 %A A136333 _Reinhard Zumkeller_, Mar 26 2008