cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A136333 Numbers containing only digits coprime to 10 in their decimal representation.

This page as a plain text file.
%I A136333 #26 Feb 15 2024 01:56:01
%S A136333 1,3,7,9,11,13,17,19,31,33,37,39,71,73,77,79,91,93,97,99,111,113,117,
%T A136333 119,131,133,137,139,171,173,177,179,191,193,197,199,311,313,317,319,
%U A136333 331,333,337,339,371,373,377,379,391,393,397,399,711,713,717,719,731
%N A136333 Numbers containing only digits coprime to 10 in their decimal representation.
%C A136333 Numbers containing digits 1,3,7,9 only, or, numbers written in base 4 (cf. A007090) with digits mapped by: 0->1, 1->3, 2->7 and 3->9. - _Reinhard Zumkeller_, Jul 17 2014
%H A136333 Reinhard Zumkeller, <a href="/A136333/b136333.txt">Table of n, a(n) for n = 1..10000</a>
%H A136333 Robert Baillie and Thomas Schmelzer, <a href="https://library.wolfram.com/infocenter/MathSource/7166/">Summing Kempner's Curious (Slowly-Convergent) Series</a>, Mathematica Notebook kempnerSums.nb, Wolfram Library Archive, 2008.
%H A136333 <a href="/index/Ar#10-automatic">Index entries for 10-automatic sequences</a>.
%F A136333 Sum_{n>=1} 1/a(n) = 2.395867871130444522329053889312125689319669370758630349552737883715872077555... (calculated using Baillie and Schmelzer's kempnerSums.nb, see Links). - _Amiram Eldar_, Feb 15 2024
%t A136333 fQ[n_] := Block[{s = {1, 3, 7, 9}}, Union[Join[s, IntegerDigits@ n]] == s]; Select[ Range@ 1000, fQ] (* or *)
%t A136333 depth = 3; FromDigits@# & /@ FlattenAt[ Table[ Tuples[{1, 3, 7, 9}, n], {n, depth}], {#} & /@ Range[depth]] (* _Robert G. Wilson v_, Jul 02 2014 *)
%o A136333 (Haskell)
%o A136333 import Data.List (intersect)
%o A136333 a136333 n = a136333_list !! (n-1)
%o A136333 a136333_list = filter (null . intersect "024568" . show) [1..]
%o A136333 -- _Reinhard Zumkeller_, Jul 17 2014
%o A136333 (PARI) isok(m) = my(d=digits(m)); apply(x->gcd(x, 10), d) == vector(#d, k, 1); \\ _Michel Marcus_, Feb 25 2022
%Y A136333 Cf. A007090, A091633 (primes), A245193.
%K A136333 nonn,base,easy
%O A136333 1,2
%A A136333 _Reinhard Zumkeller_, Mar 26 2008