cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A136338 Primes in the array A136431 that are not Fibonacci numbers.

This page as a plain text file.
%I A136338 #11 Sep 21 2015 20:09:10
%S A136338 7,11,29,37,41,67,79,97,137,191,211,277,379,631,709,821,947,967,991,
%T A136338 1129,1327,1597,1831,2017,2081,2267,2347,2557,2683,2851,2927,3571,
%U A136338 3917,4561,4657,4951,5051,5779,6217,6329,6763,8273,8647,8779,9181,9871,10093
%N A136338 Primes in the array A136431 that are not Fibonacci numbers.
%C A136338 A generalization of prime Fibonacci numbers (A005478) are the prime hyperfibonacci numbers (primes in A136431). Referring to the array A(k,n) = Apply partial sum operator k times to Fibonacci numbers, we see that every prime occurs in the n=2 column (as it contains every positive integer).
%C A136338 So excluding n=2 and k=0 (A005478) we have the nontrivially prime hyperfibonacci numbers which are not Fibonacci numbers.
%C A136338 Note that this sequence does not indicate multiplicity (e.g., 7 occurs twice in the valid part of the table).
%C A136338 Continuing the table of primes in the examples, from a computation by _Joshua Zucker_, we have:
%C A136338 k=1: {7, ...} no more through n = 1000.
%C A136338 k=2: {7, 79, 514201, 14930317, 956722025983, 5527939700884681 4660046610375530219, ...}
%C A136338 k=3: {11, 97, 17519, next value has 60 digits, ...}
%C A136338 k=4: {41, 10093, 16703, 3520457, 591286703533, 6557470285501, 19740274219868101499, ...}
%C A136338 k=5: {709, 8273, 14323, 466004661037329684,1 298611126818977061133263, ...}
%C A136338 k=6: {29, 2683, 23945893, 1835540197, 4052735290427, 27777884012083, ...}
%C A136338 k=7: {37, 967, 2267, 127921, 226007, 62048869, 1131463777, 7540113804271826929, ...}
%C A136338 k=8: {27777538280521, 1409869790947669143312035590804646728957, ...}
%C A136338 k=9: {1033628323428189498226451492123369099, next value has 60 digits, ...}
%C A136338 k=10: {67, 5972304273877744135569337875802249660927, ...}
%C A136338 k=11: {79, 4478413, 19008291293, 61305228407581679, ...}
%C A136338 k=12: {6763, 1982269, 37886753582095837, 2791715456569622316696636389, ...}.
%F A136338 Primes in the hyperfibonacci number array of A136431, excluding the n=2 column (which contains every positive integer).
%e A136338 k=1: primes in A000071 = {A000071(4) = 7}, no more through n = 1000.
%e A136338 k=2: primes in A001924 = {A001924(3) = 7, A001924(7) = 79, A001924(25) = 514201, ...}
%e A136338 k=3: primes in A014162 = {A014162(3) = 11, A014162(6) = 97, A014162(16) = 17519}, no more through n = 30.
%e A136338 k=4: primes in A014166 = {A014166(4) = 41, A014166(13) = 10093, A014166(14) = 16703}
%e A136338 k=5: primes in A053739 = {A053739(7) = 709, A053739(10) = 8273, A053739(11) = 14323}, no more through n = 27.
%e A136338 k=6: primes in A053295 = {A053295(3) = 29, A053295(8) = 2683, 23945893(24) = 23945893}, no more through n = 27.
%e A136338 k=7: primes in A053296 = {A053296(3) = 37, A053296(6) = 967, A053296(7) = 2267, A053296(12) = 127921, A053296(13) = 226007}, no more through n = 27.
%p A136338 A136431 := proc(k,n) local x ; coeftayl(x/(1-x-x^2)/(1-x)^k,x=0,n) ; end: A136338 := proc(amax) local a,k,n,a136431; a := [] ; for k from 1 do if A136431(k,3) > amax then break ; fi ; for n from 3 do a136431 := A136431(k,n) ; if a136431 > amax then break ; fi ; if isprime(a136431) and not a136431 in a then a := [op(a),a136431] ; fi ; od: od: sort(a) ; end: A136338(20000) ; # _R. J. Mathar_, Apr 21 2008
%o A136338 (PARI) partsumfib(N,s=[],P=[])={ for( n=1+#s,N, s=concat(s,n+1); forstep( i=n,1,-1, isprime( s[i]+= if( i>1, s[i-1], fibonacci(n+2) ) ) & P=setunion(P,[s[i]]) ); print(s); );vecsort(eval(P))} \\ _M. F. Hasler_
%Y A136338 Cf. A000040, A005478, A136431, A137176.
%Y A136338 Cf. A136431.
%K A136338 easy,nonn
%O A136338 1,1
%A A136338 _Jonathan Vos Post_, Apr 12 2008
%E A136338 Revised definition from _N. J. A. Sloane_, May 09 2008
%E A136338 More terms from _R. J. Mathar_, Apr 21 2008