This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A136343 #28 Sep 18 2018 16:10:58 %S A136343 1,1,2,2,4,4,6,7,10,11,14,16,21,23,29,32,40,43,52,57,69,75,88,96,113, %T A136343 122,141,153,177,190,216,233,265,285,320,345,387,415,461,495,551,589, %U A136343 650,695,767,818,896,957,1048,1116,1214,1293,1407,1495,1620,1721,1864 %N A136343 Number of partitions of n such that each summand is greater than or equal to the sum of the next two summands. %C A136343 This sequence was suggested by _Moshe Shmuel Newman_. The idea came to him while reading a paper of Lev Shneerson. %C A136343 Number of partitions of 2n into exactly n positive Fibonacci numbers. a(8) = 10: 82111111, 55111111, 53311111, 53221111, 52222111, 33331111, 33322111, 33222211, 32222221, 22222222. - _Alois P. Heinz_, Sep 18 2018 %H A136343 Alois P. Heinz, <a href="/A136343/b136343.txt">Table of n, a(n) for n = 0..3500</a> %F A136343 From _Alois P. Heinz_, Sep 18 2018: (Start) %F A136343 a(n) = [x^(2n) y^n] 1/Product_{j>=2} (1-y*x^A000045(j)). %F A136343 a(n) = A319394(2n,n). (End) %e A136343 a(5) = 4 because 4 of the 7 partitions of 5 have the required property: {5} {4,1} {3,2} {3,1,1}. The other 3 partitions of 5: {2,2,1} {2,1,1,1} and {1,1,1,1,1} each have an element which is < the sum of next two. %p A136343 b:= proc(n, i, j) option remember; `if`(n=0, 1, %p A136343 `if`(i<1, 0, b(n-i, min(n-i, i, %p A136343 `if`(j=0, i, j-i)), i) +b(n, i-1, j))) %p A136343 end: %p A136343 a:= n-> b(n$2, 0): %p A136343 seq(a(n), n=0..60); # _Alois P. Heinz_, Jul 29 2017 %t A136343 b[n_, i_, j_]:=b[n, i, j]=If[n==0, 1, If[i<1, 0, b[n - i, Min[n - i, i, If[j==0, i, j - i]], i] + b[n, i - 1, j]]]; Table[b[n, n, 0], {n, 0, 60}] (* _Indranil Ghosh_, Aug 01 2017, after Maple code *) %Y A136343 Cf. A000045, A319394. %K A136343 nonn %O A136343 0,3 %A A136343 _David S. Newman_, May 11 2008 %E A136343 Conjectured g.f. removed and a(0), a(35)-a(56) added by _Alois P. Heinz_, Jul 29 2017