cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A136371 Numbers k such that A136370(k) is prime.

This page as a plain text file.
%I A136371 #14 Jun 26 2022 10:47:37
%S A136371 1,2,3,5,46,227,232,336,360,3919
%N A136371 Numbers k such that A136370(k) is prime.
%t A136371 f=1; Do[ p=Prime[n]; f=f - (-1)^(n+1)*1/p^2; g=Numerator[f] ;If[ PrimeQ[g], Print[ {n, g} ] ], {n, 1, 100} ]
%o A136371 (Python) # uses A136370gen() and imports from A136370
%o A136371 from sympy import isprime
%o A136371 def agen(): yield from (k for k, ak in enumerate(A136370gen(), 1) if isprime(ak))
%o A136371 print(list(islice(agen(), 5))) # _Michael S. Branicky_, Jun 26 2022
%Y A136371 Cf. A024530: numerator of Sum_{k=1..n} (-1)^k/prime(k).
%Y A136371 Cf. A136368: numerator of Sum_{k=1..n} (-1)^(k+1)/prime(k)^2.
%Y A136371 Cf. A136370: numerator of 1 - Sum_{k=1..n} (-1)^(k+1)/prime(k)^2.
%Y A136371 Cf. A136365, A136366, A136367, A136369.
%K A136371 nonn,more
%O A136371 1,2
%A A136371 _Alexander Adamchuk_, Dec 27 2007
%E A136371 More terms added and edited by _Alexander Adamchuk_, Sep 15 2010
%E A136371 a(10) from _Robert Price_, Aug 29 2019