This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A136401 #24 Feb 05 2025 22:25:55 %S A136401 0,0,0,1,3,5,9,21,45,85,165,341,693,1365,2709,5461,10965,21845,43605, %T A136401 87381,174933,349525,698709,1398101,2796885,5592405,11183445,22369621, %U A136401 44741973,89478485,178951509,357913941,715838805,1431655765,2863289685,5726623061 %N A136401 a(n) = 3*a(n-1) - 4*a(n-2) + 6*a(n-3) - 4*a(n-4), with initial terms 0,0,0,1. %H A136401 Vincenzo Librandi, <a href="/A136401/b136401.txt">Table of n, a(n) for n = 0..1000</a> %H A136401 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (3,-4,6,-4). %F A136401 a(n+3) = Sum_{k=0..n} A154957(n,k)*2^k. - _Philippe Deléham_, Mar 21 2014 %F A136401 G.f.: x^3/((x-1)*(2*x-1)*(2*x^2+1)). - _Philippe Deléham_, Mar 21 2014 %e A136401 Binary.................Decimal %e A136401 0............................0 %e A136401 0............................0 %e A136401 0............................0 %e A136401 1............................1 %e A136401 11...........................3 %e A136401 101..........................5 %e A136401 1001.........................9 %e A136401 10101.......................21 %e A136401 101101......................45 %e A136401 1010101.....................85 %e A136401 10100101...................165 %e A136401 101010101..................341 %e A136401 1010110101.................693 %e A136401 10101010101...............1365 %e A136401 101010010101..............2709 %e A136401 1010101010101.............5461 %e A136401 10101011010101...........10965 %e A136401 101010101010101..........21845 %e A136401 1010101001010101.........43605, etc. - _Philippe Deléham_, Mar 21 2014 %t A136401 CoefficientList[Series[x^3/((x - 1) (2 x - 1) (2 x^2 + 1)), {x, 0, 40}], x] (* _Vincenzo Librandi_, Mar 22 2014 *) %t A136401 LinearRecurrence[{3,-4,6,-4},{0,0,0,1},40] (* _Harvey P. Dale_, Mar 13 2018 *) %Y A136401 Cf. A154957. %K A136401 nonn,easy %O A136401 0,5 %A A136401 _Paul Curtz_, Mar 30 2008 %E A136401 More terms from _Philippe Deléham_, Mar 21 2014