This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A136405 #9 Oct 23 2019 16:42:54 %S A136405 1,1,2,1,1,3,1,3,2,5,1,2,4,3,7,1,4,6,7,5,11,1,3,7,8,11,7,15,1,5,8,16, %T A136405 14,17,11,22,1,4,12,14,23,21,25,15,30,1,6,12,24,29,38,33,37,22,42,1,5, %U A136405 15,24,41,42,57,47,52,30,56,1,7,18,37,47,75,68,87,70,74,42,77 %N A136405 Triangle read by rows: T(n,k) is the number of bi-partitions of the pair (n,k) into pairs (n_i,k_i) of positive integers such that sum k_i = k and sum n_i*k_i = n. %H A136405 Andrew Howroyd, <a href="/A136405/b136405.txt">Table of n, a(n) for n = 1..1275</a> %F A136405 T(n,1) = 1. %F A136405 T(n,2) = A028242(n). %F A136405 T(n,n) = A000041(n). %e A136405 Triangle begins: %e A136405 1; %e A136405 1, 2; %e A136405 1, 1, 3; %e A136405 1, 3, 2, 5; %e A136405 1, 2, 4, 3, 7; %e A136405 1, 4, 6, 7, 5, 11; %e A136405 1, 3, 7, 8, 11, 7, 15; %e A136405 1, 5, 8, 16, 14, 17, 11, 22; %e A136405 1, 4, 12, 14, 23, 21, 25, 15, 30; %e A136405 1, 6, 12, 24, 29, 38, 33, 37, 22, 42; %e A136405 ... %e A136405 T(4,2) = 3 since (4,2) can be bi-partitioned as (2,2) or ((1,1),(3,1)) or ((2,1),(2,1)). %e A136405 T(5,3) = 4 since (5,3) can be bi-partitioned as ((1,1),(2,2)) or ((3,1),(1,2)) or ((1,1),(1,1),(3,1)) or ((1,1),(2,1),(2,1)). %o A136405 (PARI) %o A136405 P(k, w, n)={prod(i=1, k, 1 - x^(i*w) + O(x*x^(n-k*w)))} %o A136405 T(n)={Vecrev(polcoef(prod(w=1, n, sum(k=0, n\w, (x*y)^(k*w)/P(k,w,n))), n)/y)} %o A136405 { for(n=1, 10, print(T(n))) } \\ _Andrew Howroyd_, Oct 23 2019 %Y A136405 Row sums are A006171. %Y A136405 Cf. A000041, A028242, A090806, A136406. %K A136405 nonn,tabl %O A136405 1,3 %A A136405 _Benoit Jubin_, Apr 13 2008 %E A136405 Terms a(57) and beyond from _Andrew Howroyd_, Oct 23 2019