This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A136415 #19 Aug 30 2014 18:57:21 %S A136415 4,6,12,14,20,22,46,52,54,60,70,76,92,94,116,124,126,140,166,174,180, %T A136415 182,204,206,214,220,230,236,244,252,262,276,284,286,292,294,302,332, %U A136415 340,350,356,364,372,374,390,404,412,430,460,484,494,510,516,526,532 %N A136415 Numbers n such that a type-3 Gaussian normal basis over GF(2^n) exists. %C A136415 A type-t Gaussian normal basis exists for GF(2^n) if p=n*t+1 is prime and gcd(n,(p-1)/ord(2 mod p))==1. %C A136415 Type-1 basis correspond to sequence A071642, type-2 basis to A054639. %H A136415 Joerg Arndt, Mar 31 2008, <a href="/A136415/b136415.txt">Table of n, a(n) for n = 1..201</a> %H A136415 Joerg Arndt, <a href="http://www.jjj.de/fxt/#fxtbook">Matters Computational (The Fxtbook)</a>, section 42.9 "Gaussian normal bases", pp.914-920 %e A136415 12 is in the list because 3*12+1=37 is prime and the index of 2 mod 37 (==36/ord(2 mod 37)==1, 2 is a generator mod 37) is coprime to 12. %o A136415 (PARI) %o A136415 gauss_test(n, t)= %o A136415 { /* test whether a type-t Gaussian normal basis exists for GF(2^n) */ %o A136415 local( p, r2, g, d ); %o A136415 p = t*n + 1; %o A136415 if ( !isprime(p), return( 0 ) ); %o A136415 if ( p<=2, return( 0 ) ); %o A136415 r2 = znorder( Mod(2, p) ); %o A136415 d = (p-1)/r2; %o A136415 g = gcd(d, n); %o A136415 return ( if ( 1==g, 1, 0) ); %o A136415 } %o A136415 /* generate this sequence: */ %o A136415 t=3;ct=1;for(n=1,10^7,if(gauss_test(n,t), print1(n,", ");ct+=1;if(ct>200,break()))) %Y A136415 Cf. A071642, A054639. %K A136415 nonn %O A136415 1,1 %A A136415 _Joerg Arndt_, Mar 31 2008