This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A136437 #47 May 05 2025 23:42:35 %S A136437 0,1,3,1,5,7,11,13,17,5,7,13,17,19,23,29,35,37,43,47,49,55,59,65,73, %T A136437 77,79,83,85,89,7,11,17,19,29,31,37,43,47,53,59,61,71,73,77,79,91,103, %U A136437 107,109,113,119,121,131,137,143,149,151,157,161,163,173,187,191,193,197,211,217,227,229,233,239,247 %N A136437 a(n) = prime(n) - k! where k is the greatest number such that k! <= prime(n). %C A136437 How many times does each prime appear in this sequence? %C A136437 The only value (prime(n) - k!) = 0 is at n=1, where k=2. %C A136437 Are n=2, k=2 and n=4, k=3 the only occurrences of (prime(n) - k!) = 1? %C A136437 There exist infinitely many solutions of the form (prime(n) - k!) = prime(n-t), t < n. %C A136437 Are there infinitely many solutions of the form (prime(n) - k!) = prime(r_1)*...*prime(r_i); r_i < n for all i? %C A136437 From _Bernard Schott_, Jul 16 2021: (Start) %C A136437 Answer to the second question is no: 18 other occurrences (n,k) of (prime(n) - k!) = 1 are known today; indeed, every k > 1 in A002981 that satisfies k! + 1 is prime gives an occurrence, but only a third pair (n, k) is known exactly; and this comes for n = 2428957, k = 11 because (prime(2428957) - 11!) = 1. %C A136437 The next occurrence corresponds to k = 27 and n = X where prime(X) = 1+27! = 10888869450418352160768000001 but index X is not yet available (see A062701). %C A136437 For the occurrences of (prime(m) - k!) = 1, integers k are in A002981 \ {0, 1}, corresponding indices m are in A062701 \ {1} (only 3 indices are known today) and prime(m) are in A088332 \ {2}. (End) %H A136437 Jinyuan Wang, <a href="/A136437/b136437.txt">Table of n, a(n) for n = 1..10000</a> %F A136437 a(n) = prime(n)- k! where k is the greatest number for which k! <= prime(n). %F A136437 a(n) = A212598(prime(n)). - _Michel Marcus_, Feb 19 2019 %F A136437 a(n) = A000040(n) - A346425(n). - _Bernard Schott_, Jul 16 2021 %e A136437 a(1) = prime(1) - 2! = 2 - 2 = 0; %e A136437 a(2) = prime(2) - 2! = 3 - 2 = 1; %e A136437 a(3) = prime(3) - 2! = 5 - 2 = 3; %e A136437 a(4) = prime(4) - 3! = 7 - 6 = 1; %e A136437 a(5) = prime(5) - 3! = 11 - 6 = 5; %e A136437 a(6) = prime(6) - 3! = 13 - 6 = 7; %e A136437 a(7) = prime(7) - 3! = 17 - 6 = 11; %e A136437 a(8) = prime(8) - 3! = 19 - 6 = 13; %e A136437 a(9) = prime(9) - 3! = 23 - 6 = 17; %e A136437 a(10) = prime(10) - 4! = 29 - 24 = 5. %p A136437 f:=proc(n) local p,i; p:=ithprime(n); for i from 0 to p do if i! > p then break; fi; od; p-(i-1)!; end; %p A136437 [seq(f(n),n=1..70)]; # _N. J. A. Sloane_, May 22 2012 %t A136437 a[n_] := Module[{p, k},p = Prime[n];k = 1;While[Factorial[k] <= p, k++];p - Factorial[k - 1]] (* _James C. McMahon_, May 05 2025 *) %o A136437 (PARI) a(n) = my(k=1, p=prime(n)); while (k! <= p, k++); p - (k-1)!; \\ _Michel Marcus_, Feb 19 2019 %Y A136437 Cf. A135996, A000040, A000142, A212598, A212266. %Y A136437 Cf. also A002981, A062701, A088332, A346425 (gives k). %K A136437 easy,nonn %O A136437 1,3 %A A136437 _Ctibor O. Zizka_, Apr 02 2008 %E A136437 More terms from _Jinyuan Wang_, Feb 18 2019