cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A102863 a(n)=1 if at least one of the first n primes is a divisor of the sum of the first n primes; otherwise a(n)=0.

Original entry on oeis.org

1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1
Offset: 1

Views

Author

Giovanni Teofilatto, Mar 01 2005

Keywords

Comments

a(n) = 0 if and only if n is in A013916. - Robert Israel, Jan 04 2017

Examples

			a(2)=0 because none of the first 2 primes (2, 3) is a divisor of 2+3; a(5)=1 because among the first 5 primes (namely, 2,3,5,7,11) there are divisors of 2+3+5+7+11=28.
		

Crossrefs

A105783(n) gives number of primes among the first n primes that are divisors of the sum of the first n primes.

Programs

  • Maple
    with(numtheory):
    a:=proc(n)
       if nops(factorset(sum(ithprime(k),k=1..n)) intersect {seq(ithprime(j),j=1..n)}) >0 then
          1
       else
          0
       fi
    end:
    seq(a(n),n=1..130); # Emeric Deutsch
    # alternative:
    N:= 500: # to get the first N terms
    A:= Vector(N):
    S:= 2: P:= 2: p:= 2: A[1]:= 1:
    for n from 2 to N do
      p:= nextprime(p);
      S:= S+p; P:= P*p;
      if igcd(S,P) > 1 then A[n]:= 1 fi
    od:
    convert(A,list); # Robert Israel, Jan 04 2017
  • Mathematica
    a[n_] := Module[{pp = Prime[Range[n]], t}, t = Total[pp]; Boole[AnyTrue[pp, Divisible[t, #]&]]];
    Array[a, 100] (* Jean-François Alcover, Jun 16 2020 *)

Extensions

Edited and extended by Emeric Deutsch, Apr 19 2005
Showing 1-1 of 1 results.