cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A136445 Size of the BDD for the hidden weighted bit function, with the variables in their natural ordering.

This page as a plain text file.
%I A136445 #37 Feb 27 2024 04:09:57
%S A136445 3,3,7,10,17,25,40,57,85,121,172,240,335,459,630,856,1160,1564,2105,
%T A136445 2821,3777,5044,6728,8961,11926,15854,21066,27972,37127,49258,65336,
%U A136445 86636,114862,152256,201800,267436,354394,469591,622205,824379,1092211
%N A136445 Size of the BDD for the hidden weighted bit function, with the variables in their natural ordering.
%D A136445 D. E. Knuth, The Art of Computer Programming, Vol. 4A, Section 7.1.4.
%H A136445 T. D. Noe, <a href="/A136445/b136445.txt">Table of n, a(n) for n = 1..1000</a>
%H A136445 Beate Bollig, Martin Löbbing, Martin Sauerhoff and Ingo Werner, <a href="http://www.numdam.org/item/?id=ITA_1999__33_2_103_0">On the complexity of the hidden weighted bit function for various BDD models</a>, Theoretical Informatics and Applications, 33 (1999), 103-115, Theorem 4.4.
%H A136445 Randal E. Bryant, <a href="https://www.cs.cmu.edu/~bryant/pubdir/ieeetc91.pdf">On the complexity of VLSI implementations and graph representations of Boolean functions with application to integer multiplication</a>, IEEE Transactions on Computers C-40 (1991), 205-213.
%H A136445 <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (1,2,0,-3,-2,2,2,0,-1).
%F A136445 a(n) = (56*P(n+2)+77*P(n+1)+47*P(n))/23 - floor(n^2/4) - floor((7*n+1)/3) + (n mod 2) - 10, where P = A001608. - _Don Knuth_, Dec 09 2008
%F A136445 G.f.: -x*(x^8+x^7-2*x^6-3*x^5-2*x^4+3*x^3+2*x^2-3) / ((x-1)^3*(x+1)*(x^2+x+1)*(x^3+x^2-1)). - _Colin Barker_, Jan 29 2013
%e A136445 By the first formula: a(9) = (56*A001608(11)+77*A001608(10) + 47*A001608(9))/23 - floor(9^2/4) - floor((7*9+1)/3) + (9 mod 2) - 10 = 135 - 20 - 21 + 1 - 10 = 85. - _Bruno Berselli_, Jan 31 2013
%t A136445 p[n_] := n*Sum[Binomial[k, n-2*k]/k, {k, 1, n/2}]; a[n_] := (56*p[n+2] + 77*p[n+1] + 47*p[n])/23 - Floor[n^2/4] - Floor[(7*n+1)/3] + Mod[n, 2] - 10; Table[a[n], {n, 1, 41}] (* _Jean-François Alcover_, Jan 31 2013 *)
%t A136445 LinearRecurrence[{1, 2, 0, -3, -2, 2, 2, 0, -1}, {3, 3, 7, 10, 17, 25, 40, 57, 85}, 50] (* _Vincenzo Librandi_, Aug 09 2015 *)
%o A136445 (Magma) I:=[3,3,7,10,17,25,40,57,85]; [n le 9 select I[n] else Self(n-1)+2*Self(n-2)-3*Self(n-4)-2*Self(n-5)+2*Self(n-6)+2*Self(n-7)-Self(n-9): n in [1..45]]; // _Vincenzo Librandi_, Aug 09 2015
%Y A136445 Cf. A137202.
%K A136445 nonn,easy
%O A136445 1,1
%A A136445 _Don Knuth_, Apr 04 2008
%E A136445 Bryant reference added by _Don Knuth_, Apr 23 2008
%E A136445 Extension from _T. D. Noe_, Dec 10 2008