cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A136463 Diagonal of square array A136462: a(n) = C((n+1)*2^(n-1), n) for n>=0.

This page as a plain text file.
%I A136463 #11 Jul 02 2016 08:31:59
%S A136463 1,2,15,560,91390,61124064,163995687856,1756185841659392,
%T A136463 75079359427627897200,12831653340946454374300160,
%U A136463 8777916355714456994772455584000,24054320541767107204031746600673906688
%N A136463 Diagonal of square array A136462: a(n) = C((n+1)*2^(n-1), n) for n>=0.
%C A136463 a(n) is divisible by (n+1) for n>=0: a(n)/(n+1) = A136464(n).
%F A136463 a(n) = [x^n] Sum_{i>=0} ((n+1)/2)^i * log(1 + 2^i*x)^i/i!.
%F A136463 a(n) is found in row n, column 0, of matrix power A136467^(n+1) for n>=0.
%F A136463 a(n) ~ exp(n+1) * 2^(n*(n-1)) / sqrt(2*Pi*n). - _Vaclav Kotesovec_, Jul 02 2016
%t A136463 Table[Binomial[(n+1)2^(n-1),n],{n,0,15}]  (* _Harvey P. Dale_, Apr 20 2011 *)
%o A136463 (PARI) a(n)=binomial((n+1)*2^(n-1),n)
%o A136463 (PARI) /* a(n) = Coefficient of x^n in series: */
%o A136463 a(n)=polcoeff(sum(i=0,n,((n+1)/2)^i*log(1+2^i*x +x*O(x^n))^i/i!),n)
%Y A136463 Cf. A136462; A136464; rows: A136465, A014070, A136466, A101346; A136467.
%K A136463 nonn
%O A136463 0,2
%A A136463 _Paul D. Hanna_, Dec 31 2007