This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A136467 #15 Jan 17 2016 12:06:04 %S A136467 1,1,1,1,4,1,4,32,16,1,70,848,576,64,1,4368,75648,62208,9216,256,1, %T A136467 906192,22313216,21169152,3792896,143360,1024,1,621216192,21827627008, %U A136467 23212261376,4793434112,223215616,2228224,4096,1,1429702652400,71889350288384,83889221697536,19373156990976,1055047811072,13257146368,34865152,16384,1,11288510714272000,812123016027521024,1022353118549770240,258404578922332160,15923445036482560,238096880762880,803108552704,549453824,65536,1 %N A136467 Triangle T, read by rows, where column 0 of T^m equals C(m*2^(n-1), n) as n=0,1,2,3,..., for all m. %C A136467 Column 0 of T^(n+1) = row n of square array A136462 defined by: A136462(n,k) = C((n+1)*2^(k-1), k); %C A136467 T^n denotes the n-th matrix power of this triangle T = A136467. %H A136467 Paul D. Hanna, <a href="/A136467/b136467.txt">Table of n, a(n) for n = 0..495</a> %F A136467 Diagonals: T(n+1,n) = 4^n; T(n+2,n) = (2^(n+1) + n-1)*8^n. %F A136467 T(n,k) is divisible by 2^((n-k)*k) for n>=k>=0. %e A136467 Triangle T begins: %e A136467 1; %e A136467 1, 1; %e A136467 1, 4, 1; %e A136467 4, 32, 16, 1; %e A136467 70, 848, 576, 64, 1; %e A136467 4368, 75648, 62208, 9216, 256, 1; %e A136467 906192, 22313216, 21169152, 3792896, 143360, 1024, 1; %e A136467 621216192, 21827627008, 23212261376, 4793434112, 223215616, 2228224, 4096, 1; %e A136467 1429702652400, 71889350288384, 83889221697536, 19373156990976, 1055047811072, 13257146368, 34865152, 16384, 1; %e A136467 11288510714272000, 812123016027521024, 1022353118549770240, 258404578922332160, 15923445036482560, 238096880762880, 803108552704, 549453824, 65536, 1; ... %e A136467 Column 0 of T^m is given by: [T^m](n,0) = C(m*2^(n-1), n) for n>=0. %e A136467 Matrix square T^2 begins: %e A136467 1; %e A136467 2, 1; %e A136467 6, 8, 1; %e A136467 56, 128, 32, 1; %e A136467 1820, 6048, 2176, 128, 1; %e A136467 201376, 912128, 419328, 34816, 512, 1; %e A136467 74974368, 449708544, 249300992, 26198016, 548864, 2048, 1; %e A136467 94525795200, 739136655360, 477013868544, 59943682048, 1604059136, 8650752, 8192, 1; ... %e A136467 in which column 0 equals [T^2](n,0) = C(2^n, n) for n>=0. %e A136467 Matrix cube T^3 begins: %e A136467 1; %e A136467 3, 1; %e A136467 15, 12, 1; %e A136467 220, 288, 48, 1; %e A136467 10626, 19696, 4800, 192, 1; %e A136467 1712304, 4213376, 1333504, 76800, 768, 1; %e A136467 927048304, 2927926016, 1133186048, 83992576, 1216512, 3072, 1; %e A136467 1708566412608, 6784661682176, 3094826778624, 278193635328, 5216272384, 19267584, 12288, 1; ... %e A136467 in which column 0 equals [T^3](n,0) = C(3*2^(n-1), n) for n>=0. %e A136467 Matrix 4th power T^4 begins: %e A136467 1; %e A136467 4, 1; %e A136467 28, 16, 1; %e A136467 560, 512, 64, 1; %e A136467 35960, 45888, 8448, 256, 1; %e A136467 7624512, 12731904, 3066880, 135168, 1024, 1; %e A136467 5423611200, 11434738688, 3390050304, 193953792, 2146304, 4096, 1; %e A136467 13161885792000, 34243130728448, 12032434503680, 841005662208, 12133597184, 34078720, 16384, 1; ... %e A136467 in which column 0 equals [T^4](n,0) = C(4*2^(n-1), n) for n>=0. %e A136467 Matrix 5th power T^5 begins: %e A136467 1; %e A136467 5, 1; %e A136467 45, 20, 1; %e A136467 1140, 800, 80, 1; %e A136467 91390, 88720, 13120, 320, 1; %e A136467 24040016, 30268800, 5881600, 209920, 1280, 1; %e A136467 21193254160, 33353694464, 8005555200, 372858880, 3338240, 5120, 1; %e A136467 63815149590720, 122539734714368, 34967493738496, 1998561607680, 23429775360, 53084160, 20480, 1; ... %e A136467 in which column 0 equals [T^5](n,0) = C(5*2^(n-1), n) for n>=0. %o A136467 (PARI) {T(n,k) = my(M=matrix(n+1,n+1,r,c,binomial(r*2^(c-2),c-1)),P); P=matrix(n+1,n+1,r,c,binomial((r+1)*2^(c-2),c-1));(P~*M~^-1)[n+1,k+1]} %o A136467 for(n=0,10,for(k=0,n,print1(T(n,k),", "));print("")) %Y A136467 Cf. columns: A136465, A136468, A136469; A136470 (matrix square); A136462. %K A136467 nonn,tabl %O A136467 0,5 %A A136467 _Paul D. Hanna_, Dec 31 2007