cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A136484 Number of unit square lattice cells inside quadrant of origin centered circle of diameter 2n+1.

This page as a plain text file.
%I A136484 #6 Jul 30 2023 02:14:27
%S A136484 0,1,3,6,13,19,28,37,48,64,77,94,110,131,152,172,199,226,253,281,308,
%T A136484 343,377,412,447,488,528,567,612,654,703,750,796,847,902,957,1013,
%U A136484 1068,1129,1187,1252,1313,1378,1446,1511,1582,1650,1725,1800,1877,1955,2034
%N A136484 Number of unit square lattice cells inside quadrant of origin centered circle of diameter 2n+1.
%C A136484 Number of unit square lattice cells inside quadrant of origin centered circle of radius n+1/2.
%H A136484 G. C. Greubel, <a href="/A136484/b136484.txt">Table of n, a(n) for n = 0..1000</a>
%F A136484 a(n) = Sum_{k=1..n} floor(sqrt((n+1/2)^2 - k^2)).
%F A136484 a(n) = (1/2) * A136515(n).
%F A136484 a(n) = (1/4) * A136486(n).
%F A136484 a(n) = A136483(2*n+1).
%F A136484 Lim_{n -> oo} a(n)/(n^2) -> Pi/16 (A019683).
%e A136484 a(2) = 3 because a circle of radius 2+1/2 in the first quadrant encloses (2,1), (1,1), (1,2).
%t A136484 Table[Sum[Floor[Sqrt[(n+1/2)^2 - k^2]], {k,n}], {n,0,100}]
%o A136484 (Magma)
%o A136484 A136484:= func< n | n eq 0 select 0 else (&+[Floor(Sqrt((n+1/2)^2-j^2)): j in [1..n]]) >;
%o A136484 [A136484(n): n in [0..100]]; // _G. C. Greubel_, Jul 29 2023
%o A136484 (SageMath)
%o A136484 def A136484(n): return sum(floor(sqrt((n+1/2)^2-k^2)) for k in range(1, n+1))
%o A136484 [A136484(n) for n in range(101)] # _G. C. Greubel_, Jul 29 2023
%Y A136484 Cf. A019683, A136483, A136486, A136515.
%K A136484 easy,nonn
%O A136484 0,3
%A A136484 Glenn C. Foster (gfoster(AT)uiuc.edu), Jan 02 2008