cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A136485 Number of unit square lattice cells enclosed by origin centered circle of diameter n.

This page as a plain text file.
%I A136485 #15 Jul 30 2023 02:14:21
%S A136485 0,0,4,4,12,16,24,32,52,60,76,88,112,120,148,164,192,216,256,276,308,
%T A136485 332,376,392,440,476,524,556,608,648,688,732,796,832,904,936,1012,
%U A136485 1052,1124,1176,1232,1288,1372,1428,1508,1560,1648,1696,1788,1860,1952,2016
%N A136485 Number of unit square lattice cells enclosed by origin centered circle of diameter n.
%C A136485 a(n) is the number of complete squares that fit inside the circle with diameter n, drawn on squared paper.
%H A136485 G. C. Greubel, <a href="/A136485/b136485.txt">Table of n, a(n) for n = 1..1000</a>
%F A136485 a(n) = 4 * Sum_{k=1..floor(n/2)} floor(sqrt((n/2)^2 - k^2)).
%F A136485 a(n) = 4 * A136483(n).
%F A136485 a(n) = 2 * A136513(n).
%F A136485 Lim_{n -> oo} a(n)/(n^2) -> Pi/4 (A003881).
%F A136485 a(n) = [x^(n^2)] (theta_3(x^4) - 1)^2 / (1 - x). - _Ilya Gutkovskiy_, Nov 24 2021
%e A136485 a(3) = 4 because a circle centered at the origin and of radius 3/2 encloses (-1,-1), (-1,1), (1,-1), (1,1).
%t A136485 Table[4*Sum[Floor[Sqrt[(n/2)^2 - k^2]], {k,Floor[n/2]}], {n,100}]
%o A136485 (Magma)
%o A136485 A136485:= func< n | n le 1 select 0 else 4*(&+[Floor(Sqrt((n/2)^2-j^2)): j in [1..Floor(n/2)]]) >;
%o A136485 [A136485(n): n in [1..100]]; // _G. C. Greubel_, Jul 29 2023
%o A136485 (SageMath)
%o A136485 def A136485(n): return 4*sum(floor(sqrt((n/2)^2-k^2)) for k in range(1,(n//2)+1))
%o A136485 [A136485(n) for n in range(1,101)] # _G. C. Greubel_, Jul 29 2023
%Y A136485 Cf. A003881, A136483, A136513.
%Y A136485 Alternating merge of A119677 of A136485.
%K A136485 easy,nonn
%O A136485 1,3
%A A136485 Glenn C. Foster (gfoster(AT)uiuc.edu), Jan 02 2008