cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A136486 Number of unit square lattice cells enclosed by origin centered circle of diameter 2n+1.

This page as a plain text file.
%I A136486 #6 Jul 31 2023 02:59:33
%S A136486 0,4,12,24,52,76,112,148,192,256,308,376,440,524,608,688,796,904,1012,
%T A136486 1124,1232,1372,1508,1648,1788,1952,2112,2268,2448,2616,2812,3000,
%U A136486 3184,3388,3608,3828,4052,4272,4516,4748,5008,5252,5512,5784,6044,6328,6600
%N A136486 Number of unit square lattice cells enclosed by origin centered circle of diameter 2n+1.
%C A136486 a(n) is the number of complete squares that fit inside the circle with radius n+1/2, drawn on squared paper.
%H A136486 G. C. Greubel, <a href="/A136486/b136486.txt">Table of n, a(n) for n = 0..1000</a>
%F A136486 a(n) = 4*Sum_{k=1..n} floor(sqrt((n+1/2)^2 - k^2)).
%F A136486 a(n) = 4 * A136484(n).
%F A136486 a(n) = 2 * A136515(n).
%F A136486 a(n) = A136485(2*n+1).
%F A136486 Lim_{n -> oo} a(n)/(n^2) -> Pi/4 (A003881).
%e A136486 a(1) = 4 because a circle centered at the origin and of radius 1+1/2 encloses (-1,-1), (-1,1), (1,-1), (1,1).
%t A136486 Table[4*Sum[Floor[Sqrt[(n + 1/2)^2 - k^2]], {k,n}], {n, 0, 100}]
%o A136486 (Magma)
%o A136486 A136486:= func< n | n eq 0 select 0 else 4*(&+[Floor(Sqrt((n+1/2)^2-j^2)): j in [1..n]]) >;
%o A136486 [A136486(n): n in [0..100]]; // _G. C. Greubel_, Jul 30 2023
%o A136486 (SageMath)
%o A136486 def A136486(n): return 4*sum(floor(sqrt((n+1/2)^2-k^2)) for k in range(1, n+1))
%o A136486 [A136486(n) for n in range(101)] # _G. C. Greubel_, Jul 30 2023
%Y A136486 Cf. A003881, A136484, A136485, A136515.
%K A136486 easy,nonn
%O A136486 0,2
%A A136486 Glenn C. Foster (gfoster(AT)uiuc.edu), Jan 02 2008