This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A136487 #21 Dec 28 2023 11:33:53 %S A136487 1,1,1,1,1,-1,-1,-1,0,2,0,-1,2,0,-4,0,2,-3,2,7,-4,-5,2,1,5,-5,-11,11, %T A136487 7,-7,-1,1,-8,12,16,-28,-8,20,0,-4,13,-25,-20,60,-2,-46,12,12,-3,-1, %U A136487 -21,50,19,-120,38,92,-50,-24,15,2,-1 %N A136487 Coefficients of polynomial recursion p(n,x) = (x-1)*(p(n-1,x) - (x+1)*p(n-2,x)), p(0,x) = 1, p(1,x) = x+1. %C A136487 Only coefficients of x^k for k <= degree of p(n,x) are included. With this then, since p(2,x) = 0, row 2 is empty. %C A136487 The same polynomial coefficients may be obtained, without signs, with the use of the recurrence p(x, n) = (x+1)*p(x, n-1) - (x^2-1)*p(x, n-2), and p(x, 0) = 1, p(x, 1) = x-1. %H A136487 Robert Israel, <a href="/A136487/b136487.txt">Table of n, a(n) for n = 0..10103</a>(rows 0 to 141, flattened) %F A136487 T(n, k) = coefficient [x^k] ( p(x, n) ), where p(x,n) = (x-1)*p(x,n-1) - (x^2-1)*p(x,n-2), p(x,0) = 1, p(x,1) = x+1. %F A136487 Sum_{k >= 0} T(n, k) = A130706(n). %F A136487 From _Robert Israel_, Dec 03 2018: (Start) %F A136487 T(n,k) = T(n-1,k-1) - T(n-1,k) - T(n-2,k-2) + T(n-2,k). %F A136487 G.f. as array: (1-2*x)/(1 + x*(y-1)+x^2*(1-y^2)). %F A136487 T(n,0) = (-1)^(n+1)*A000045(n-2) for n >= 3. (End) %e A136487 First few rows are: %e A136487 1; %e A136487 1, 1; %e A136487 {}; %e A136487 1, 1, -1, -1; %e A136487 -1, 0, 2, 0, -1; %e A136487 2, 0, -4, 0, 2; %e A136487 -3, 2, 7, -4, -5, 2, 1; %e A136487 5, -5, -11, 11, 7, -7, -1, 1; %e A136487 -8, 12, 16, -28, -8, 20, 0, -4; %e A136487 13, -25, -20, 60, -2, -46, 12, 12, -3, -1; %e A136487 -21, 50, 19, -120, 38, 92, -50, -24, 15, 2, -1; %p A136487 F:= proc(n) option remember; expand((1-x)*procname(n-1)+(1-x^2)*procname(n-2)) end proc: %p A136487 F(0):= 1: F(1):= 1+x: %p A136487 R:=proc(n) local V,j; %p A136487 V:= F(n); %p A136487 seq(coeff(V,x,j),j=0..degree(V)) %p A136487 end proc: %p A136487 for i from 0 to 20 do R(i) od; # _Robert Israel_, Dec 03 2018 %t A136487 P[x,0]= 1; P[x,1]= x+1; P[x_,n_]:= P[x,n]= (x-1)*(P[x,n-1] - (x+1)*P[x,n-2]); %t A136487 Table[CoefficientList[P[x,n],x],{n,0,10}]//Flatten %o A136487 (Magma) %o A136487 m:=12; %o A136487 function p(n,x) %o A136487 if n le 1 then return (x+1)^n; %o A136487 else return (x-1)*(p(n-1,x) - (x+1)*p(n-2,x)); end if; %o A136487 end function; %o A136487 R<x>:=PowerSeriesRing(Integers(), m+2); %o A136487 T:= func< n,k | Coefficient(R!( p(n,x) ), k) >; %o A136487 [1,1,1] cat [T(n,k): k in [0..n], n in [3..m]]; // _G. C. Greubel_, Jul 31 2023 %o A136487 (SageMath) %o A136487 def p(n,x): %o A136487 if n<2: return (x+1)^n %o A136487 else: return (x-1)*(p(n-1,x) - (x+1)*p(n-2,x)) %o A136487 def T(n): %o A136487 P.<x> = PowerSeriesRing(QQ) %o A136487 return P( p(n,x) ).list() %o A136487 flatten([T(n) for n in range(13)]) # _G. C. Greubel_, Jul 31 2023 %Y A136487 Cf. A000045, A130706 (row sums). %K A136487 tabf,sign %O A136487 0,10 %A A136487 _Roger L. Bagula_, Mar 21 2008 %E A136487 Edited by _Robert Israel_, Dec 03 2018