This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A136489 #14 Aug 01 2023 07:09:13 %S A136489 1,1,1,1,4,1,1,5,5,1,1,8,10,8,1,1,9,18,18,9,1,1,12,27,40,27,12,1,1,13, %T A136489 39,67,67,39,13,1,1,16,52,112,134,112,52,16,1,1,17,68,164,246,246,164, %U A136489 68,17,1,1,20,85,240,410,504,410,240,85,20,1 %N A136489 Triangle T(n, k) = 3*A007318(n, k) - 2*A034851(n, k). %H A136489 G. C. Greubel, <a href="/A136489/b136489.txt">Rows n = 0..50 of the triangle, flattened</a> %F A136489 T(n, k) = 3*A007318(n, k) - 2*A034851(n, k). %F A136489 Sum_{k=0..n} T(n, k) = A122746(n). %F A136489 From _G. C. Greubel_, Aug 01 2023: (Start) %F A136489 T(n, k) = 2*A007318(n, k) - A051159(n, k). %F A136489 T(n, k) = T(n-1, k) + T(n-1, k-1) if k is even. %F A136489 T(n, n-k) = T(n, k). %F A136489 T(n, n-1) = A042948(n). %F A136489 Sum_{k=0..n} (-1)^k * T(n, k) = 2*[n=0] - A077957(n). (End) %e A136489 First few rows of the triangle are: %e A136489 1; %e A136489 1, 1; %e A136489 1, 4, 1; %e A136489 1, 5, 5, 1; %e A136489 1, 8, 10, 8, 1; %e A136489 1, 9, 18, 18, 9, 1; %e A136489 1, 12, 27, 40, 27, 12, 1; %e A136489 1, 13, 39, 67, 67, 39, 13, 1; %e A136489 1, 16, 52, 112, 134, 112, 52, 16, 1; %e A136489 1, 17, 68, 164, 246, 246, 164, 68, 17, 1; %e A136489 ... %t A136489 T[n_, k_]:= 2*Binomial[n,k] -Binomial[Mod[n,2], Mod[k,2]]*Binomial[Floor[n/2], Floor[k/2]]; %t A136489 Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten (* _G. C. Greubel_, Aug 01 2023 *) %o A136489 (Magma) %o A136489 A136489:= func< n,k | 2*Binomial(n,k) - Binomial(n mod 2, k mod 2)*Binomial(Floor(n/2), Floor(k/2)) >; %o A136489 [A136489(n,k): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Aug 01 2023 %o A136489 (SageMath) %o A136489 def A136489(n,k): return 2*binomial(n,k) - binomial(n%2, k%2)*binomial(n//2, k//2) %o A136489 flatten([[A136489(n,k) for k in range(n+1)] for n in range(13)]) # _G. C. Greubel_, Aug 01 2023 %Y A136489 Cf. A034851, A042948, A077957, A122746 (row sums). %K A136489 nonn,tabl,easy %O A136489 0,5 %A A136489 _Gary W. Adamson_, Jan 01 2008