cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A136493 Triangle of coefficients of characteristic polynomials of symmetrical pentadiagonal matrices of the type (1,-1,1,-1,1).

This page as a plain text file.
%I A136493 #17 Aug 17 2023 08:17:37
%S A136493 1,-1,1,1,-2,0,-1,3,0,0,1,-4,1,2,0,-1,5,-3,-5,1,1,1,-6,6,8,-5,-2,1,-1,
%T A136493 7,-10,-10,14,4,-4,0,1,-8,15,10,-29,-4,12,0,0,-1,9,-21,-7,50,-4,-30,4,
%U A136493 4,0,1,-10,28,0,-76,28,61,-20,-15,2,1
%N A136493 Triangle of coefficients of characteristic polynomials of symmetrical pentadiagonal matrices of the type (1,-1,1,-1,1).
%C A136493 From _Georg Fischer_, Mar 29 2021: (Start)
%C A136493 The pentadiagonal matrices have 1 in the main diagonal, -1 in the first lower and upper diagonal, 1 in the second lower and upper diagonal, and 0 otherwise.
%C A136493 The linear recurrences that yield A124805, A124806, A124807 and similar can be derived from the rows of this triangle (the first element of a row must be removed and multiplied onto the remaining elements).
%C A136493 This observation extends to other sequences. For example the linear recurrence signature (5,-6,2,4,0) of A124698 "Number of base 5 circular n-digit numbers with adjacent digits differing by 1 or less" can be derived from the coefficients of the characteristic polynomial of a tridiagonal (type -1,1,-1) 5 X 5 matrix.
%C A136493 (End)
%D A136493 Anthony Ralston and Philip Rabinowitz, A First Course in Numerical Analysis, 1978, ISBN 0070511586, see p. 256.
%H A136493 G. C. Greubel, <a href="/A136493/b136493.txt">Rows n = 0..50 of the triangle, flattened</a>
%F A136493 Sum_{k=1..n} T(n, k) = (-1)^(n mod 3) * A087509(n+1) + [n=1].
%F A136493 From _G. C. Greubel_, Aug 01 2023: (Start)
%F A136493 T(n, n) = A011658(n+2).
%F A136493 T(n, 1) = (-1)^(n-1).
%F A136493 T(n, 2) = A181983(n-1).
%F A136493 T(n, 3) = (-1)^(n-3)*A161680(n-3). (End)
%e A136493 Triangle begins:
%e A136493    1;
%e A136493   -1,   1;
%e A136493    1,  -2,   0;
%e A136493   -1,   3,   0,   0;
%e A136493    1,  -4,   1,   2,   0;
%e A136493   -1,   5,  -3,  -5,   1,  1;
%e A136493    1,  -6,   6,   8,  -5, -2,   1;
%e A136493   -1,   7, -10, -10,  14,  4,  -4,   0;
%e A136493    1,  -8,  15,  10, -29, -4,  12,   0,   0;
%e A136493   -1,   9, -21,  -7,  50, -4, -30,   4,   4,  0;
%e A136493    1, -10,  28,   0, -76, 28,  61, -20, -15,  2,  1;
%t A136493 T[n_, m_]:= Piecewise[{{-1, 1+m==n || m==1+n}, {1, 2+m==n || m==n || m==2+n}}];
%t A136493 MO[d_]:= Table[T[n, m], {n,d}, {m,d}];
%t A136493 CL[n_]:= CoefficientList[CharacteristicPolynomial[MO[n], x], x];
%t A136493 Join[{{1}}, Table[Reverse[CL[n]], {n,10}]]//Flatten
%t A136493 (* For the signature of A124698 added by _Georg Fischer_, Mar 29 2021 : *)
%t A136493 Reverse[CoefficientList[CharacteristicPolynomial[{{1,-1,0,0,0}, {-1, 1,-1,0,0}, {0,-1,1,-1,0}, {0,0,-1,1,-1}, {0,0,0,-1,1}}, x], x]]
%Y A136493 Cf. A011658, A087509, A124805 ff., A124696 ff., A124999 ff., A161680, A181983.
%K A136493 tabl,sign
%O A136493 0,5
%A A136493 _Roger L. Bagula_, Mar 21 2008
%E A136493 Edited by _Georg Fischer_, Mar 29 2021