This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A136502 #2 Mar 30 2012 18:37:08 %S A136502 1,-1,1,2,-2,1,-7,7,-4,1,44,-44,26,-8,1,-516,516,-308,100,-16,1,11622, %T A136502 -11622,6959,-2296,392,-32,1,-512022,512022,-306888,101754,-17712, %U A136502 1552,-64,1,44588536,-44588536,26732904,-8877272,1554404,-139104,6176,-128,1 %N A136502 Matrix inverse of triangle A136501, read by rows. %F A136502 G.f. for column k: 1 = Sum_{n>=0} T(n+k,k)*x^n*(1+x)^(2^(n+k)). %e A136502 Triangle begins: %e A136502 1; %e A136502 -1, 1; %e A136502 2, -2, 1; %e A136502 -7, 7, -4, 1; %e A136502 44, -44, 26, -8, 1; %e A136502 -516, 516, -308, 100, -16, 1; %e A136502 11622, -11622, 6959, -2296, 392, -32, 1; %e A136502 -512022, 512022, -306888, 101754, -17712, 1552, -64, 1; %e A136502 44588536, -44588536, 26732904, -8877272, 1554404, -139104, 6176, -128, 1; %o A136502 (PARI) {T(n,k)=local(M=matrix(n+1,n+1,r,c,binomial(2^(c-1),r-c)));(M^-1)[n+1,k+1]} %Y A136502 Cf. A107354 (column 0), A136503 (column 2), A136504 (row sums) ; A136501 (matrix inverse). %K A136502 sign,tabl %O A136502 0,4 %A A136502 _Paul D. Hanna_, Jan 01 2008