This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A136509 #6 Mar 15 2021 01:50:33 %S A136509 1,2,6,16,50,171,697,3416,21126,169105,1794683,25891713,507686588, %T A136509 13878639286,518836271475,27356839451662,1968958300103603, %U A136509 200935638262212462,27892630019328034846,5502857784211927305980 %N A136509 G.f.: A(x) = Sum_{n>=0} (-1)^n * (1 -x -2^n*x^2)^(-1) * log(1 -x -2^n*x^2)^n / n!. %H A136509 G. C. Greubel, <a href="/A136509/b136509.txt">Table of n, a(n) for n = 0..100</a> %t A136509 With[{m=30}, CoefficientList[Series[Sum[(-1)^j*Log[1-x-2^j*x^2]^j/(j!*(1-x -2^j*x^2)), {j,0,m+2}], {x,0,m}], x]] (* _G. C. Greubel_, Mar 15 2021 *) %o A136509 (PARI) {a(n)=polcoeff(sum(i=0,n,(-1)^i*1/(1-x*(1+2^i*x +x*O(x^n)))*log(1-x-2^i*x^2 +x*O(x^n))^i/i!),n)} %o A136509 (Magma) %o A136509 m:=30; R<x>:=PowerSeriesRing(Rationals(), m); %o A136509 Coefficients(R!( (&+[(-1)^j*Log(1-x-2^j*x^2)^j/(Factorial(j)*(1 -x -2^j*x^2)) : j in [0..m+2]]) )); // _G. C. Greubel_, Mar 15 2021 %o A136509 (Sage) %o A136509 def A136509_list(prec): %o A136509 P.<x> = PowerSeriesRing(QQ, prec) %o A136509 return P( sum((-1)^j*log(1-x -2^j*x^2)^j/(factorial(j)*(1 -x -2^j*x^2)) for j in (0..32)) ).list() %o A136509 A136509_list(30) # _G. C. Greubel_, Mar 15 2021 %Y A136509 Cf. A136507, A136508. %K A136509 nonn %O A136509 0,2 %A A136509 _Paul D. Hanna_, Jan 01 2008