cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A136512 Produced by same formula that gives A093934 (signed tournaments), but with LCM instead of GCD in the exponent.

This page as a plain text file.
%I A136512 #6 Feb 29 2020 16:09:28
%S A136512 1,2,4,12,64,616,10304,293744,14381056,1242433312,196990542848,
%T A136512 59624929814720,35242762808786944,40573409794074305152,
%U A136512 89317952471536946659328,368970766373159503907450624,2827862662172992194150488080384,40061570271801436240253461050024448,1050869620561002649814192493096912289792
%N A136512 Produced by same formula that gives A093934 (signed tournaments), but with LCM instead of GCD in the exponent.
%H A136512 Andrew Howroyd, <a href="/A136512/b136512.txt">Table of n, a(n) for n = 0..50</a>
%F A136512 a(n) = Sum_{j} (1/(Product (k^(j_k) (j_k)!))) * 2^{t_j},
%F A136512 where j runs through all partitions of n into odd parts, say with j_1 parts of size 1, j_3 parts of size 3, etc.,
%F A136512 and t_j = (1/2)*[ Sum_{r=1..n, s=1..n} j_r j_s lcm(r,s) + Sum_{r} j_r ].
%o A136512 (PARI)
%o A136512 permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
%o A136512 edges(v) = {sum(i=2, #v, sum(j=1, i-1, lcm(v[i], v[j]))) + sum(i=1, #v, v[i]\2)}
%o A136512 oddp(v) = {for(i=1, #v, if(bitand(v[i], 1)==0, return(0))); 1}
%o A136512 a(n) = {my(s=0); forpart(p=n, if(oddp(p), s+=permcount(p)*2^(#p+edges(p)))); s/n!} \\ _Andrew Howroyd_, Feb 29 2020
%Y A136512 Cf. A093934.
%K A136512 nonn
%O A136512 0,2
%A A136512 _N. J. A. Sloane_, Jul 21 2009