This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A136513 #15 Jul 28 2023 17:13:24 %S A136513 0,0,2,2,6,8,12,16,26,30,38,44,56,60,74,82,96,108,128,138,154,166,188, %T A136513 196,220,238,262,278,304,324,344,366,398,416,452,468,506,526,562,588, %U A136513 616,644,686,714,754,780,824,848,894,930,976,1008,1056,1090,1134,1170 %N A136513 Number of unit square lattice cells inside half-plane (two adjacent quadrants) of origin centered circle of diameter n. %H A136513 G. C. Greubel, <a href="/A136513/b136513.txt">Table of n, a(n) for n = 1..1000</a> %F A136513 Lim_{n -> oo} a(n)/(n^2) -> Pi/8. %F A136513 a(n) = 2 * Sum_{k=1..floor(n/2)} floor(sqrt((n/2)^2 - k^2)). %F A136513 a(n) = 2 * A136483(n). %F A136513 a(n) = (1/2) * A136485(n). %F A136513 a(n) = [x^(n^2)] (theta_3(x^4) - 1)^2 / (2 * (1 - x)). - _Ilya Gutkovskiy_, Nov 24 2021 %e A136513 a(3) = 2 because a circle centered at the origin and of radius 3/2 encloses (-1,1) and (1,1) in the upper half plane. %t A136513 Table[2*Sum[Floor[Sqrt[(n/2)^2 -k^2]], {k,Floor[n/2]}], {n,100}] %o A136513 (Magma) %o A136513 A136513:= func< n | n eq 1 select 0 else 2*(&+[Floor(Sqrt((n/2)^2-j^2)): j in [1..Floor(n/2)]]) >; %o A136513 [A136513(n): n in [1..100]]; // _G. C. Greubel_, Jul 27 2023 %o A136513 (SageMath) %o A136513 def A136513(n): return 2*sum(isqrt((n/2)^2-k^2) for k in range(1,(n//2)+1)) %o A136513 [A136513(n) for n in range(1,101)] # _G. C. Greubel_, Jul 27 2023 %o A136513 (PARI) a(n) = 2*sum(k=1, n\2, sqrtint((n/2)^2-k^2)); \\ _Michel Marcus_, Jul 27 2023 %Y A136513 Alternating merge of A136514 and A136515. %Y A136513 Cf. A136483, A136485. %K A136513 easy,nonn %O A136513 1,3 %A A136513 Glenn C. Foster (gfoster(AT)uiuc.edu), Jan 02 2008