This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A136519 #11 Jul 30 2023 02:12:55 %S A136519 1,3,15,156,4556,417384,128004240,136874853504,523288667468832, %T A136519 7257782720507161152,368292386875012729754240, %U A136519 68761030015590030510485191680,47447175348985315294381264871833600 %N A136519 a(n) = A027907(2^n+1, n), where A027907 = triangle of trinomial coefficients. %H A136519 G. C. Greubel, <a href="/A136519/b136519.txt">Table of n, a(n) for n = 0..59</a> %F A136519 a(n) = [x^n] (1 + x + x^2)^(2^n+1), the coefficient of x^n in (1 + x + x^2)^(2^n+1). %F A136519 O.g.f.: A(x) = Sum_{n>=0} (1 + 2^n*x + 4^n*x^2) * log(1 + 2^n*x + 4^n*x^2)^n / n!. %e A136519 A(x) = 1 + 3*x + 15*x^2 + 156*x^3 + 4556*x^4 + 417384*x^5 + ... %e A136519 A(x) = (1 +x +x^2) + (1 +2*x +4*x^2)*log(1 +2*x +4*x^2) + (1 +4*x +16*x^2)*log(1 +4*x +16*x^2)^2/2! + (1 +8*x +64*x^2)*log(1 +8*x +64*x^2)^3/3! + (1 +16*x +256*x^2)*log(1 +16*x +256*x^2)^4/4! + ... %e A136519 This is a special case of the more general statement: %e A136519 Sum_{n>=0} m^n * F(q^n*x)^b * log( F(q^n*x) )^n / n! = %e A136519 Sum_{n>=0} x^n * [y^n] F(y)^(m*q^n + b) %e A136519 where F(x) = 1+x+x^2, q=2, m=1, b=1. %t A136519 With[{m=40, f= 1 +2^j*x +4^j*x^2}, CoefficientList[Series[ Sum[f*Log[f]^j/j!, {j,0,m+1}], {x,0,m}], x]] (* _G. C. Greubel_, Jul 27 2023 *) %o A136519 (PARI) a(n)=polcoeff((1+x+x^2+x*O(x^n))^(2^n+1),n) %o A136519 (PARI) /* As coefficient x^n of Series: */ a(n)=polcoeff(sum(i=0,n,(1+2^i*x+2^(2*i)*x^2)*log(1+2^i*x+2^(2*i)*x^2 +x*O(x^n))^i/i!),n) %o A136519 (Magma) %o A136519 m:=40; // gf of A136519 %o A136519 gf:= func< x | (&+[(1 +2^j*x +4^j*x^2)*Log(1 +2^j*x +4^j*x^2)^j/Factorial(j): j in [0..m+1]]) >; %o A136519 R<x>:=PowerSeriesRing(Rationals(), m); %o A136519 Coefficients(R!( gf(x) )); // _G. C. Greubel_, Jul 27 2023 %o A136519 (SageMath) %o A136519 m=40 %o A136519 def f(x): return sum( (1 + 2^j*x + 4^j*x^2)*log(1 + 2^j*x + 4^j*x^2)^j/factorial(j) for j in range(m+2) ) %o A136519 def A136519_list(prec): %o A136519 P.<x> = PowerSeriesRing(QQ, prec) %o A136519 return P( f(x) ).list() %o A136519 A136519_list(m) # _G. C. Greubel_, Jul 27 2023 %Y A136519 Cf. A027907, A136518. %K A136519 nonn %O A136519 0,2 %A A136519 _Paul D. Hanna_, Jan 02 2008