This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A136520 #10 Jul 27 2023 08:29:25 %S A136520 1,1,3,13,44,146,530,1975,7314,27262,102802,390138,1486064,5682756, %T A136520 21812436,83976075,324115550,1253795510,4859960402,18871869302, %U A136520 73398851448,285882923196,1114943553308,4353426835238,17016813133124,66581653586476,260750813149140,1022023318047220 %N A136520 a(n) = Sum_{k=1..n} A001263(n,k) * A027656(k). %C A136520 Narayana transform of A027656. %H A136520 G. C. Greubel, <a href="/A136520/b136520.txt">Table of n, a(n) for n = 1..1000</a> %F A136520 a(n) = Sum_{k=1..n} A001263(n,k) * A027656(k). %F A136520 a(n) = Sum_{j=0..floor((n-1)/2)} ((j+1)/(2*j+1))*binomial(n, 2*j) * binomial(n-1, 2*j). - _G. C. Greubel_, Jul 27 2023 %e A136520 a(4) = 13 = (1, 6, 6, 1) dot (1, 0, 2, 0) = (1 + 0 + 12 + 0). %e A136520 Triangle A001263(n,k) * A027656(k+1) and the rows sums: %e A136520 1; : 1; %e A136520 1, 0; : 1; %e A136520 1, 0, 2; : 3; %e A136520 1, 0, 12, 0; : 13; %e A136520 1, 0, 40, 0, 3; : 44; %e A136520 1, 0, 100, 0, 45, 0; : 146; %e A136520 1, 0, 210, 0, 315, 0, 4; : 530; %e A136520 1, 0, 392, 0, 1470, 0, 112, 0; : 1975; %e A136520 1, 0, 672, 0, 5292, 0, 1344, 0, 5; : 7314; %e A136520 1, 0, 1080, 0, 15876, 0, 10080, 0, 225, 0 : 27262; %t A136520 A136520[n_]:= Sum[Binomial[n-1, 2*k]*Binomial[n, 2*k]*((k+1)/(2*k+1)), {k,0,Floor[(n-1)/2]}]; %t A136520 Table[A136520[n], {n, 40}] (* _G. C. Greubel_, Jul 27 2023 *) %o A136520 (Magma) %o A136520 A136520:= func< n | (&+[((j+1)/(2*j+1))*Binomial(n,2*j)*Binomial(n-1,2*j): j in [0..Floor((n-1)/2)]]) >; %o A136520 [A136520(n): n in [1..40]]; // _G. C. Greubel_, Jul 27 2023 %o A136520 (SageMath) %o A136520 def A136520(n): return sum(((j+1)/(2*j+1))*binomial(n,2*j)*binomial(n-1, 2*j) for j in range((n+1)//2)) %o A136520 [A136520(n) for n in range(1,41)] # _G. C. Greubel_, Jul 27 2023 %Y A136520 Cf. A001263, A027656. %K A136520 nonn,easy %O A136520 1,3 %A A136520 _Gary W. Adamson_, Jan 02 2008 %E A136520 Terms a(11) onward added by _G. C. Greubel_, Jul 27 2023