cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A136520 a(n) = Sum_{k=1..n} A001263(n,k) * A027656(k).

This page as a plain text file.
%I A136520 #10 Jul 27 2023 08:29:25
%S A136520 1,1,3,13,44,146,530,1975,7314,27262,102802,390138,1486064,5682756,
%T A136520 21812436,83976075,324115550,1253795510,4859960402,18871869302,
%U A136520 73398851448,285882923196,1114943553308,4353426835238,17016813133124,66581653586476,260750813149140,1022023318047220
%N A136520 a(n) = Sum_{k=1..n} A001263(n,k) * A027656(k).
%C A136520 Narayana transform of A027656.
%H A136520 G. C. Greubel, <a href="/A136520/b136520.txt">Table of n, a(n) for n = 1..1000</a>
%F A136520 a(n) = Sum_{k=1..n} A001263(n,k) * A027656(k).
%F A136520 a(n) = Sum_{j=0..floor((n-1)/2)} ((j+1)/(2*j+1))*binomial(n, 2*j) * binomial(n-1, 2*j). - _G. C. Greubel_, Jul 27 2023
%e A136520 a(4) = 13 = (1, 6, 6, 1) dot (1, 0, 2, 0) = (1 + 0 + 12 + 0).
%e A136520 Triangle A001263(n,k) * A027656(k+1) and the rows sums:
%e A136520   1;                                              :     1;
%e A136520   1,  0;                                          :     1;
%e A136520   1,  0,    2;                                    :     3;
%e A136520   1,  0,   12,  0;                                :    13;
%e A136520   1,  0,   40,  0,     3;                         :    44;
%e A136520   1,  0,  100,  0,    45,  0;                     :   146;
%e A136520   1,  0,  210,  0,   315,  0,     4;              :   530;
%e A136520   1,  0,  392,  0,  1470,  0,   112,  0;          :  1975;
%e A136520   1,  0,  672,  0,  5292,  0,  1344,  0,    5;    :  7314;
%e A136520   1,  0, 1080,  0, 15876,  0, 10080,  0,  225,  0 : 27262;
%t A136520 A136520[n_]:= Sum[Binomial[n-1, 2*k]*Binomial[n, 2*k]*((k+1)/(2*k+1)), {k,0,Floor[(n-1)/2]}];
%t A136520 Table[A136520[n], {n, 40}] (* _G. C. Greubel_, Jul 27 2023 *)
%o A136520 (Magma)
%o A136520 A136520:= func< n | (&+[((j+1)/(2*j+1))*Binomial(n,2*j)*Binomial(n-1,2*j): j in [0..Floor((n-1)/2)]]) >;
%o A136520 [A136520(n): n in [1..40]]; // _G. C. Greubel_, Jul 27 2023
%o A136520 (SageMath)
%o A136520 def A136520(n): return sum(((j+1)/(2*j+1))*binomial(n,2*j)*binomial(n-1, 2*j) for j in range((n+1)//2))
%o A136520 [A136520(n) for n in range(1,41)] # _G. C. Greubel_, Jul 27 2023
%Y A136520 Cf. A001263, A027656.
%K A136520 nonn,easy
%O A136520 1,3
%A A136520 _Gary W. Adamson_, Jan 02 2008
%E A136520 Terms a(11) onward added by _G. C. Greubel_, Jul 27 2023