This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A136531 #21 Sep 26 2022 20:06:54 %S A136531 1,0,1,1,-1,1,-1,3,-2,1,2,-5,6,-3,1,-3,10,-13,10,-4,1,5,-18,29,-26,15, %T A136531 -5,1,-8,33,-60,65,-45,21,-6,1,13,-59,122,-151,125,-71,28,-7,1,-21, %U A136531 105,-241,338,-321,217,-105,36,-8,1,34,-185,468,-730,784,-609,350,-148,45,-9,1 %N A136531 Coefficients of polynomials B(x,n) = ((1+a+b)*x - c)*B(x,n-1) - a*b*B(x,n-2) where B(x,0) = 1, B(x,1) = x, a=-b, b=1, c=1. %H A136531 G. C. Greubel, <a href="/A136531/b136531.txt">Rows n = 0..50 of the triangle, flattened</a> %F A136531 G.f.: (1+y) / (1 + (1-x)*y - y^2). - _Kevin Ryde_, Sep 21 2022 %F A136531 From _G. C. Greubel_, Sep 22 2022: (Start) %F A136531 T(n, k) = coefficients of i^n*(ChebyshevU(n, (x-1)/(2*i)) - i*ChebyshevU(n-1, (x-1)/(2*i))). %F A136531 T(n, k) = coefficients of (-1)^n*( Fibonacci(n+1, 1-x) - Fibonacci(n, 1-x) ). %F A136531 T(n, k) = i^(k-n-1)*(i*GegenbauerC(n-k, k+1, 1/(2*i)) - GegenbauerC(n-k-1, k+1, 1/(2*i))). %F A136531 T(n, 0) = Fibonacci(1-n) = (-1)^n*A212804(n) = A039834(n-1). %F A136531 T(n, 1) = (-1)^(n-1)*A010049(n), n >= 1. %F A136531 T(n, 2) = (-1)^n*A055243(n-2), n >= 2. %F A136531 T(n, n) = 1. %F A136531 T(n, n-1) = -(n-1). %F A136531 T(n, n-2) = A000217(n-1), n >= 2. %F A136531 T(n, n-3) = -A008728(n-3), n >= 3. %F A136531 Sum_{k=0..n-2} T(n, k) = A000027(n-1), n >= 2. %F A136531 Sum_{k=0..n} T(n, k) = 1. %F A136531 Sum_{k=0..floor(n/2)} T(n-k, k) = A151575(n) = (-1)^n*A078008(n). (End) %e A136531 Triangle begins %e A136531 k=0 k=1 k=2 k=3 k=4 k=5 k=6 %e A136531 n=0: 1; %e A136531 n=1: 0, 1; %e A136531 n=2: 1, -1, 1; %e A136531 n=3: -1, 3, -2, 1; %e A136531 n=4: 2, -5, 6, -3, 1; %e A136531 n=5: -3, 10, -13, 10, -4, 1; %e A136531 n=6: 5, -18, 29, -26, 15, -5, 1; %t A136531 (* First program *) %t A136531 a = -b; c = 1; b = 1; %t A136531 B[x_, n_]:= B[x, n]= If[n<2, x^n, ((1+a+b)*x -c)*B[x, n-1] -a*b*B[x, n-2]]; %t A136531 Table[CoefficientList[B[x,n], x], {n,0,10}]//Flatten %t A136531 (* Second program *) %t A136531 B[x_, n_]:= (-1)^n*(Fibonacci[n+1, 1-x] - Fibonacci[n, 1-x]); %t A136531 Table[CoefficientList[B[x, n], x], {n,0,16}]//Flatten (* _G. C. Greubel_, Sep 22 2022 *) %o A136531 (Magma) %o A136531 C<i> := ComplexField(); // T = A136531 %o A136531 T:= func< n,k | k eq n select 1 else Round(i^(k-n-1)*(i*Evaluate(GegenbauerPolynomial(n-k, k+1), 1/(2*i)) - Evaluate(GegenbauerPolynomial(n-k-1, k+1), 1/(2*i)))) >; %o A136531 [T(n,k): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Sep 26 2022 %o A136531 (SageMath) %o A136531 def T(n,k): # T = A136531 %o A136531 if k==n: return 1 %o A136531 else: return i^(k-n-1)*(i*gegenbauer(n-k, k+1, 1/(2*i)) - gegenbauer(n-k-1, k+1, 1/(2*i))) %o A136531 flatten([[T(n,k) for k in range(n+1)] for n in range(12)]) # _G. C. Greubel_, Sep 26 2022 %Y A136531 Cf. A000027, A000217, A008728, A010049, A039834. %Y A136531 Cf. A055243, A078008, A136526, A151575, A212804. %K A136531 tabl,sign %O A136531 0,8 %A A136531 _Roger L. Bagula_, Mar 23 2008 %E A136531 Offset corrected by _Kevin Ryde_, Sep 21 2022