cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A136567 a(n) is the number of exponents occurring only once each in the prime factorization of n.

This page as a plain text file.
%I A136567 #19 Jul 26 2017 09:23:41
%S A136567 0,1,1,1,1,0,1,1,1,0,1,2,1,0,0,1,1,2,1,2,0,0,1,2,1,0,1,2,1,0,1,1,0,0,
%T A136567 0,0,1,0,0,2,1,0,1,2,2,0,1,2,1,2,0,2,1,2,0,2,0,0,1,1,1,0,2,1,0,0,1,2,
%U A136567 0,0,1,2,1,0,2,2,0,0,1,2,1,0,1,1,0,0,0,2,1,1,0,2,0,0,0,2,1,2,2,0,1,0,1,2,0
%N A136567 a(n) is the number of exponents occurring only once each in the prime factorization of n.
%C A136567 Records are in A006939: 1, 2, 12, 360, 75600, ..., . - _Robert G. Wilson v_, Jan 20 2008
%H A136567 Antti Karttunen, <a href="/A136567/b136567.txt">Table of n, a(n) for n = 1..10000</a>
%H A136567 <a href="/index/Eu#epf">Index entries for sequences computed from exponents in factorization of n</a>
%F A136567 a(n) = A056169(A181819(n)). - _Antti Karttunen_, Jul 24 2017
%e A136567 4200 = 2^3 * 3^1 * 5^2 * 7^1. The exponents of the prime factorization are therefore 3,1,2,1. The exponents occurring exactly once are 2 and 3. So a(4200) = 2.
%t A136567 f[n_] := Block[{fi = Sort[Last /@ FactorInteger@n]}, Count[ Count[fi, # ] & /@ Union@fi, 1]]; f[1] = 0; Array[f, 105] (* _Robert G. Wilson v_, Jan 20 2008 *)
%t A136567 Table[Boole[n != 1] Count[Split@ Sort[FactorInteger[n][[All, -1]]], _?(Length@ # == 1 &)], {n, 105}] (* _Michael De Vlieger_, Jul 24 2017 *)
%o A136567 (PARI) A136567(n) = { my(exps=(factor(n)[, 2]), m=prod(i=1, length(exps), prime(exps[i])), f=factor(m)[, 2]); sum(i=1, #f, f[i]==1); }; \\ _Antti Karttunen_, Jul 24 2017
%o A136567 (Scheme) (define (A136567 n) (A056169 (A181819 n))) ;; _Antti Karttunen_, Jul 24 2017
%Y A136567 Cf. A056169, A071625, A133924, A136566, A181819.
%Y A136567 For a(n)=0 see A130092 plus the term 1; for a(n)=1 see A000961.
%K A136567 nonn
%O A136567 1,12
%A A136567 _Leroy Quet_, Jan 07 2008
%E A136567 More terms from _Robert G. Wilson v_, Jan 20 2008